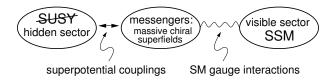
Flavour gauge messengers


Felix Brümmer

with M. McGarrie, A. Weiler

1/18

Messenger gauge mediation recap

Features:

- soft term spectrum calculable, few parameters
- flavour universality
 - \Rightarrow no FCNC problem

Bugs:

- $\mu/B\mu$ problem
- trilinear A-terms?
- flavour universality + LHC bounds on 1st gen. squarks
 - \Rightarrow all squarks heavy

Messenger gauge-Higgs mediation

Allow for superpotential couplings between messenger and Higgs fields see e.g. → Craig/Knapen/Shih '13: Shih's talk

- μ, Βμ
- trilinears √
- flavour √x

Flavoured gauge mediation, higgsed gauge mediation

Non-universal squark masses in gauge mediation:

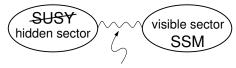
- Introduce also matter-messenger couplings in W:
 generically large flavour violation
 (can be averted with extra flavour symmetries)
 "Flavoured gauge mediation / Yukawa deflected GM" → Shadmi/Szabo '11, Kang
 et al. '12, Albaid/Babu '12, Abdullah et al. '12, Galon/Perez/Shadmi '13, talks by Jelinski, Galon
- Introduce chiral messengers charged under gauged horizontal symmetry: Non-universal squark masses from partial higgsing at different scales "Higgsed gauge mediation" → Craig/McCullough/Thaler '12

Not the only possibilities

Aim of this talk

Construct a gauge-mediated model with

- light 3rd generation, heavy and degenerate 1st and 2nd
- FCNCs under control


Crucial ingredients:

 $SU(3)_C \times SU(2)_L \times U(1)_Y \times \frac{SU(3)_F}{2}$ gauge group

Both chiral + gauge messengers

Flavour gauge messengers

vector
Central idea: Messengers = massive chiral superfields

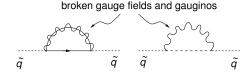
massive vector multiplets of gauged horizontal symmetry

Needs:

- Extra gauge group G under which hidden and visible sector are charged,
 e.g. G = SU(3)_F
- break G non-supersymmetrically by F-term VEVs
 - ⇒ tree-level *G*-gaugino masses, loop-level visible-sector soft terms

Brief history of gauge messengers

- Invented in 1980s GUT model building
 - → Witten's inverted hierarchy '81, Dimopoulos/Raby '83, Kaplunovsky '83,...
- More detailed studies in late '90s (product gauge groups broken to SM)
 - → Dimopoulos et al. '97, Murayama '97, Giudice/Rattazzi '97,...
- Briefly resurrected in 2000s → Dermisek/Kim/Kim '06
- Again of interest in GGM context → Buican/Komargodski '09,Intriligator/Sudano '10


Never very popular for (GUT-)model building (we'll see why)
This talk: Idea works well if *G* is gauged flavour symmetry

Effects of flavour gauge messengers

SSM Quark superfields $Q, U, D = \mathbf{3}$ under SU(3)_F Hidden sector superfields $T, X = \mathbf{3}$ and $\widetilde{T}, \widetilde{X} = \mathbf{\bar{3}}$

Break SU(3)_F
$$\to$$
 SU(2)_F by $\langle \widetilde{T} \rangle^{\dagger} = \langle T \rangle = (0, 0, \nu)$ and $\langle \widetilde{X} \rangle^{\dagger} = \langle X \rangle = (0, 0, F_X \theta^2)$

- higher-dimensional operators \Rightarrow top Yukawa coupling: $\widetilde{T}\widetilde{T}QUH_u$
- SUSY-breaking X VEV: SUSY-breaking mass splittings between broken gauge fields and gauginos
- Dominant effect: Tachyonic one-loop squark mass² → Intriligator/Sudano '10

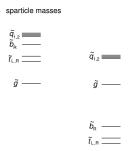
Alignment of X and T VEVs: largest effect for 3rd generation squarks

1-loop squark mass from flavour gauge messengers

$$\begin{split} \mathcal{K}_{\text{eff}}^{\text{(1-loop)}} &= \frac{1}{16\pi^2} \operatorname{tr} \left(M_V^2 \log \frac{M_V^2}{\Lambda^2} \right) \\ &= \frac{g^2}{16\pi^2} \left(Q_i^\dagger \mathbf{T}_{ij}^{ab} Q_j + U_i^\dagger \mathbf{T}_{ij}^{ab} U_j + D_i^\dagger \mathbf{T}_{ij}^{ab} D_j \right) \times \\ &\times \log \left(\frac{T_i^\dagger \mathbf{T}_{ij} T_j + X_i^\dagger \mathbf{T}_{ij} X_j + \widetilde{T}_i \mathbf{T}_{ij} \widetilde{T}_j^\dagger + \widetilde{X}_i \mathbf{T}_{ij} \widetilde{X}_j^\dagger}{\Lambda^2} \right)^{ab} + \dots \end{split}$$

where $\mathbf{T}^{ab} = \{t^a, t^b\}$ (fundamental generators) and $\langle \widetilde{T} \rangle^{\dagger} = \langle T \rangle = (0, 0, \nu); \qquad \langle \widetilde{X} \rangle^{\dagger} = \langle X \rangle = (0, 0, F_X \theta^2)$

$$\Rightarrow m_Q^2 = m_U^2 = m_D^2 = -\frac{g^2}{16\pi^2} \frac{|F_X|^2}{v^2} \begin{pmatrix} \frac{7}{6} & 0 & 0\\ 0 & \frac{7}{6} & 0\\ 0 & 0 & \frac{8}{3} \end{pmatrix}$$


(More general: $m^2=-rac{g^2}{16\pi^2}\Delta c_2~\Lambda^2
ightarrow$ Intriligator/Sudano '10)

Effect on the superpartner spectrum

Tachyonic contribution to squark masses from flavour gauge messengers:

$$\delta m_{Q,U,D}^2 = -\frac{g_F^2}{16\pi^2} \left(\begin{array}{ccc} \frac{7}{6} & 0 & 0 \\ 0 & \frac{7}{6} & 0 \\ 0 & 0 & \frac{8}{3} \end{array} \right) \frac{F^2}{M^2}$$

- largest for stops and sbottoms
- if one-loop $SU(3)_F$ effects comparable with two-loop $SU(3)_C \times SU(2)_L \times U(1)_Y$ effects:
 - stop and sbottom masses lowered
 - first- and second-generation squark masses slightly lowered
 - rest of spectrum hardly affected

no gauge messengers

with gauge messengers

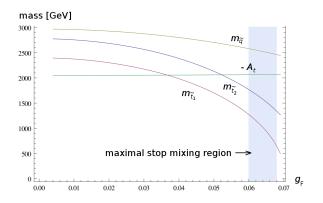
Effect on the superpartner spectrum

 3rd generation squarks tachyonic at mediation scale, runs positive due to gluino loops
 (cf. also → Dermisek/Kim '06, Dermisek/Kim/Kim '06, Draper et al. '11)

- Can get sub-TeV stops and sbottoms with first-generation squarks above LHC limits
- Can get maximal stop mixing contributions to m_{h0} in MSSM with moderate or zero A_t at mediation scale

naive prediction of gauge mediation (may not hold if $\mu/B\mu$ generated by Higgs-messenger couplings \to Shih's talk)

 Can also lift m_{h0} by extra d.o.f. or non-decoupling effects... flavour gauge messengers really just affect the flavour sector


Light stops and lightest Higgs mass in MSSM

Gaugino and matter soft terms: minimal GMSB + flavour gauge messengers

Higgs soft terms: free parameters (gauge-Higgs mediation)

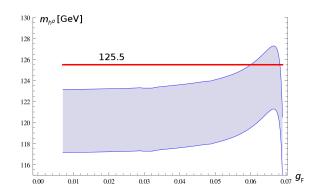
RG evolution: SOFTSUSY → Allanach '01

Effect of switching on $SU(3)_F$ gauge coupling:

$$\Lambda_{\rm MGM} = 3 \cdot 10^5 \ {\rm GeV}, \, \textit{M} = 10^7 \ {\rm GeV}, \, \textit{N}_5 = 1, \, \textit{A}_0 = -2 \ {\rm TeV}, \, \textit{m}_{\textit{H}_U}^2 = \textit{m}_{\textit{H}_d}^2 = 10^5 \ ({\rm GeV})^2, \, \tan\beta = 10^{-10} \ ({\rm GeV})^2,$$

12 / 18

Light stops and lightest Higgs mass in MSSM

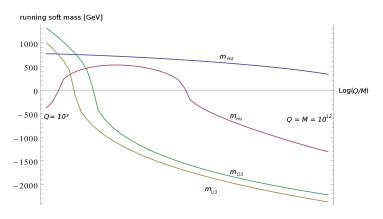

Gaugino and matter soft terms: minimal GMSB + flavour gauge messengers

Higgs soft terms: free parameters (gauge-Higgs mediation)

RG evolution: SOFTSUSY → Allanach '01

Higgs mass: FeynHiggs \rightarrow Heinemeyer/Hollik/Weiglein et al. '98-, ± 3 GeV th. unc.

Effect of switching on $SU(3)_F$ gauge coupling:

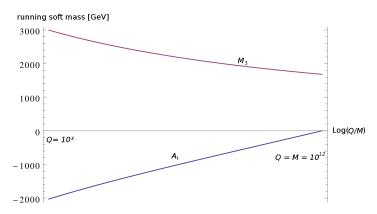


$$\Lambda_{\rm MGM} = 3 \cdot 10^5 \ {\rm GeV}, \, M = 10^7 \ {\rm GeV}, \, N_5 = 1, \, A_0 = -2 \ {\rm TeV}, \, m_{H_U}^2 = m_{H_d}^2 = 10^5 \ ({\rm GeV})^2, \, \tan\beta = 10^7 \ {\rm GeV}$$

Felix Brümmer Flavour gauge messengers 12/18

Radiative maximal stop mixing

Example with a high messenger scale ($M=10^{12}$ GeV), radiatively induced A_t , $m_{h^0}=124\pm3$ GeV: similar to \rightarrow Draper/Meade/Reece/Shih '11

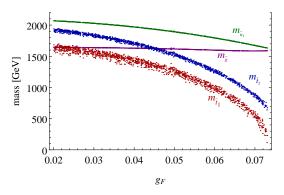


Drawback: uncomfortably large gluino mass \approx 3 TeV

$$\Lambda_{\rm MGM} = 1.5 \cdot 10^5 \text{ GeV}, M = 10^{12} \text{ GeV}, N_5 = 3, A_0 = 0, m_{H_U}^2 = -1.8 \cdot 10^6 (\text{GeV})^2, m_{H_d}^2 = 10^5 (\text{GeV})^2, q_F = 0.15, \tan \beta = 10$$

Radiative maximal stop mixing

Example with a high messenger scale ($M=10^{12}$ GeV), radiatively induced A_t , $m_{h^0}=124\pm3$ GeV: similar to \rightarrow Draper/Meade/Reece/Shih '11



Drawback: uncomfortably large gluino mass \approx 3 TeV

$$\Lambda_{\rm MGM} = 1.5 \cdot 10^5 \ {\rm GeV}, \, M = 10^{12} \ {\rm GeV}, \, N_5 = 3, \, A_0 = 0, \, m_{H_U}^2 = -1.8 \cdot 10^6 \ ({\rm GeV})^2, \, m_{H_d}^2 = 10^5 \ ({\rm GeV})^2, \, g_F = 0.15, \, {\rm tan} \, \beta = 10$$

Gauge messengers in NMSSM

Similar picture:

(using SPheno → Porod '03)

- scan over Higgs sector parameters, requiring $m_{h^0} = 125.5 \pm 3$ GeV
- gauge mediation parameters held fixed

Model building: SUSY breaking

Simple O'Raifeartaigh model to illustrate alignment of VEVs:

$$W = \kappa Y \left(T\widetilde{T} - f^2 \right) + m\widetilde{X}T + mX\widetilde{T}$$

where
$$X, T = \mathbf{3}, \qquad \widetilde{X}, \widetilde{T} = \mathbf{\overline{3}}, \qquad Y = \text{singlet}$$

For $\kappa f > m$: Vacuum at T = (0, 0, v), $F_X = mT$, $v^2 = f^2 - m^2/\kappa^2$

- SUSY breaking aligned with SU(3)_F → SU(2)_F breaking by e.o.m.
- "Small SUSY breaking limit", $F_X < v^2$
- For full flavour structure need to break also SU(2)_F at lower scale (independently)
- On the wishlist: fully dynamical model

Model building: Flavour symmetry breaking

Non-universal gauge messenger contribution to squark masses is diagonal only in one particular flavour basis

Rotating to SCKM basis ⇒ off-diagonal squark masses ⇒ FCNCs

Model dependent

Simple example: Break $SU(2)_F \rightarrow 0$ with extra VEVs

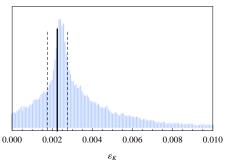
$$\langle S \rangle = (0, u, w), \qquad \langle \widetilde{S} \rangle^{\dagger} = e^{i\phi} \langle S \rangle$$

Treat all fields as spurions; impose discrete symmetry; take $|w| \sim |u| \ll |v|$

$$W = \frac{\widetilde{T}_i \widetilde{T}_j}{\Lambda^2} Q_i U_j H_u + \frac{\widetilde{S}_i \widetilde{S}_j}{\Lambda^2} Q_i U_j H_u + \ldots + \frac{S_i \widetilde{T}_i S_j \widetilde{T}_j T_k S_l T_n S_q}{\Lambda^8} \epsilon_{klm} \epsilon_{npq} Q_m U_q H_u$$

induces realistic up-type Yukawa matrix if $|w|/|v| \sim |u|/|v| = \epsilon \approx 0.1$ Non-abelian Froggatt-Nielsen model

Down-type Yukawas similar


Model building: Flavour symmetry breaking

Mass and CKM hierarchies roughly reproduced, e.g.

$$V_{
m CKM} \sim \left(egin{array}{ccc} 1 & \epsilon & \epsilon^2 \ \epsilon & 1 & \epsilon \ \epsilon^2 & \epsilon & 1 \end{array}
ight)$$

although V_{us} , V_{cb} a bit too small

Flavour constraints: mostly from $\Delta F = 2$ observables, especially ϵ_K Using MCMC scan to sample flavour model parameter space:

On the wishlist: nicer flavour models

Conclusions

- Gauge messengers for a gauged flavour symmetry: interesting model-building ingredient
- For SU(3)_F with SUSY breaking aligned with SU(3)_F → SU(2)_F breaking in flavour space:
 - \bullet large negative contributions to 3rd gen. masses \Rightarrow stops and sbottoms light
 - smaller -ve contributions to 1st/2nd gen. masses ⇒ other squarks heavy
- Allows for maximal stop mixing without extremely large A-terms
 - ⇒ 125 GeV Higgs in MSSM
- Alignment of VEVs can be realized dynamically
- Large contributions to ϵ_K possible. Model dependent, can be estimated in a given flavour model