MadGolem: Automated NLO predictions for SUSY and beyond

David López-Val

together with D. Gonçalves Netto (MPI, Munich), T. Plehn (Heidelberg U.), I. Wigmore (Edinburgh U.), K. Mawatari (Vrije U.)

ITP - Universität Heidelberg

SUSY 2013, Trieste (Italy) - August 29th 2013

David López-Val - ITP Universität Heidelberg MadGolem: Automated NLO predictions for SUSY and beyond

- MadGolem a 3-slide overview
- 2 MadGolem architecture
- MadGolem performance
- MadGolem an application: MSSM 3rd generation

Outline

MadGolem – a 3-slide overview

- 2 MadGolem architecture
- 3 MadGolem performance
- 4 MadGolem an application: MSSM 3rd generation

5 Summary

NEXT-TO-LEADING ORDER

NEW PHYSICS

PROSPINO

PROSPINO =

Outline

MadGolem – a 3-slide overview

2 MadGolem – architecture

3 MadGolem – performance

MadGolem – an application: MSSM 3rd generation

5 Summary

MadGolem - architecture

Automating NLO - the major hurdles

One-loop amplitude

Analytical results accessible at any time

• Dedicated coding: efficient generation & numerical evaluation

• Loop filtering

- Grouping of topologically equivalent one-loop diagrams
- Amplitude coefficients as split dynamic libraries loaded at runtime

• Genuine New Physics structures treatable

- Majorana fermions (clashing arrows !)
- complex color & spin structures
- MSSM renormalization including heavy flavor squarks & SUSY restoration.

Most easily interfaced with MG tools : FeynRules, MadAnalysis, . .

David López-Val - ITP Universität Heidelberg MadGolem: Automated NLO predictions for SUSY and beyond

Outline

- MadGolem a 3-slide overview
- 2 MadGolem architecture
- MadGolem performance
- MadGolem an application: MSSM 3rd generation

5 Summary

Running MadGolem

- Virtual corrections $\mathcal{O}(\alpha_s)$ virtual gluon/gluino/squark exchange
- Real corrections : quark and gluon emission off the initial partons and the final-state squark

i) self-energy insertions; ii) vertex corrections; iii) box diagrams; iv) real emission

- Virtual corrections $\mathcal{O}(\alpha_s)$ virtual gluon/gluino/squark exchange
- Real corrections : quark and gluon emission off the initial partons and the final-state squark

i) self-energy insertions; ii) vertex corrections ; iii) box diagrams; iv) real emission

- Virtual corrections $\mathcal{O}(\alpha_s)$ virtual gluon/gluino/squark exchange
- Real corrections : quark and gluon emission off the initial partons and the final-state squark

i) self-energy insertions; ii) vertex corrections; iii) box diagrams ; iv) real emission

- Virtual corrections $\mathcal{O}(\alpha_s)$ virtual gluon/gluino/squark exchange
- Real corrections : quark and gluon emission off the initial partons and the final-state squark

i) self-energy insertions; ii) vertex corrections; iii) box diagrams; iv) real emission

The Feynman diagrams get generated

Running MadGolem

3-stage procedure
$$-$$
 3 interfaces \leftrightarrow 3 executables

The scattering amplitudes are further translated

```
90
                                   GRAPHS NGGOLEM LOOP,h - KWrite
Ble Edit View Jools Settings Help
9 New 🖂 Open 🛄 Save 📈 Save As 👩 Close 🗐 Undo 🕅 Redo 🔍 Enlarge Pont 🚽 Red Next 🔨 Red Previous 🚓 Red Go to Line
  G diagram4 = + Den( - k1 - k2,0)*intM(Den(g1,TMASS2),Den(k3 + g1,MG02)
         ,Den( - k4 + q1,MGO2))*SUNF(Glu19,Glu17,Glu18)*SUNSum(Col10,3)*
        SUNSum(Glu17,8)*SUNSum(Glu18,8)*SUNSum(Glu19,8)*SUNT(Glu17,Col3,
        Col10)*SUNT(Glu18,Col10,Col4)*SUNT(Glu19,Col2,Col1)*GG2*scalar3*
         scalar4*Pi^(-2) * ( 1/64*Spinor(k1,0,-1)*g (2,7 ,Lor5)*Spinor(k2,
            0,1)*q (2,7 ,k4,Lor5,k3,q1)*i *GT1G0P1*GT1G0M2*GGI2 + 1/64*
            Spinor(k1,0,-1)*g (2,7,Lor5)*Spinor(k2,0,1)*g (2,7,k4,Lor5,
            k3)*i *TMASS*GT1G0P2*GT1G0M2*GGI2 + 1/64*Spinor(k1,0,-1)*g (2,
            7 ,Lor5)*Spinor(k2,0,1)*g (2,7 ,k4,Lor5,k3)*i *TMASS*GT1G0P1*
            GT1G0M2*GGI2 + 1/64*Spinor(k1,0,-1)*q (2,7,Lor5)*Spinor(k2,0,
            1)*g (2,7 ,k4,Lor5,g1,g1)*i *GT1G0P1*GT1G0M2*GGI2 + 1/64*
            Spinor(k1,0,-1)*g (2,7 ,Lor5)*Spinor(k2,0,1)*g (2,7 ,k4,Lor5,
            q1)*i *TMASS*GT1G0P2*GT1G0M2*GGI2 + 1/64*Spinor(k1,0,-1)*g (2,
            7 ,Lor5)*Spinor(k2,0,1)*g (2,7 ,k4,Lor5,g1)*i *TMASS*GT1G0P1*
            GT1G0M2*GGI2 + 1/64*Spinor(k1,0,-1)*g (2,7,Lor5)*Spinor(k2,0,
            1)*g (2,7 ,k4,Lor5)*i *MGO*TMASS*GT1G0P2*GT1G0M2*GGI2 + 1/64*
            Spinor(k1,0,-1)*g (2,7 ,Lor5)*Spinor(k2,0,1)*g (2,7 ,q1,k4,
            Lor5,k3 * GT1G0P2*GT1G0M1*GGI2 + 1/64*Spinor(k1,0,-1)*q (2,
            7_,Lor5)*Spinor(k2,0,1)*g_(2,7_,q1,k4,Lor5,q1)*i_*GT1G0P2*
            GT1GOM1*GGI2 + 1/64*Spinor(k1,0,-1)*g (2,7 ,Lor5)*Spinor(k2,0,
            1)*a (2.7 .a1.k4.Lor5)*i *MGO*GT1G0P2*GT1G0M1*GGI2 - 1/64*
```

David López-Val - ITP Universität Heidelberg

MadGolem: Automated NLO predictions for SUSY and beyond

and analytically reduced

Class and second states and se	0.00
n jan jan jan jan jan jan jan jan jan ja	
FUN[4] := BUBd4(S12,MG02,MG02):	î
FUN[5] := BUBd4(S12,MT12,MT12):	
FUN[6] := BUBd4(S12,TMASS2,TMASS2):	- 18
FUN[7] := TADd4(MT12):	
FUN[8] := TRId4(MT12,MT12,S12,MT12,0,0):	
<pre>FUN[9] := TRId4(MT12,MT12,S12,TMASS2,MG02,MG02):</pre>	
<pre>FUN[10] := TRId4(MT12,S12,MT12,MT12,MT12,0):</pre>	
<pre>FUN[11] := TRId4(MT12,S12,MT12,TMASS2,TMASS2,MG02):</pre>	
#	
# 2 non-zero out of 4 helicity amplitudes found	
A I unique necleity amplitudes round	
here helis 4.	
unique halie - [2].	
symmetry helis := [[2, 3]]:	
HFLT[2]:=[1, -1, 5, 5]:	
HELI[3]:=[-1, 1, 5, 5]:	
#	
ReferenceVector := [k3b, k3b, k1, k1]:	
FINAL_GRAPH_LIST := [2, 3, 4, 5, 6, 7]:	
GRAPH_C0EFF[4, 2, 1, 1, 2] := -1/16×GG2*GGI2×(S23*2-2×MT12×S23+MT12*2+S23×S12)×(MT12×GT1G0P2×GT1G0H1+	·MT1
GRAPH_C0EFF[4, 2, 2, 1, 2] := 3/16*GG2*GGI2*(S23^2-2*MT12*S23+MT12^2+S23*S12)*(MT12*GT1G0P2*GT1G0M1+M	TT12
GRAPH_COEFF[4, 2, 1, 1, 4] := 1/32*GG2~GG12*(S23^2 2*MT12*S23+MT12*S23*S12)*(-2*MT12*GT1GOP1*GT1GOP	2-2
GRAPH_COEFF[4, 2, 2, 1, 4]:= -3/32*GG2*GG12*(S23*2-2*MI12*S23+MI12*2+S23*S12)*(-2*MI12*G1160P1*G1160	M2-
GRAPH_COEFF[4, 2, 1, 1, 9] := -1/16^GG2*GG12*(S23*2-2^M112*S23+M112*2+S23*S12)*(-MG0*2*M112*G1160P1*G	116
GRAPH_LUEFF[4, 2, 2, 1, 9]:= 5/10*002*012*(525 2-2*Mil2*525+Mil2 2+525*512)*(-MoU 2*Mil2*01160P1*01 COTMOD FACE 4, 212- Three back and the second se	IGO
principal al all'all'all'all'all'all'all'all'al	
	\$
	<>

David López-Val - ITP Universität Heidelberg MadGolem: Automated NLO predictions for SUSY and beyond

Running MadGolem

MadGolem results

K-factor=(P1+P2+P3)/P1= 1.647

Total LO cross section 204.221

Total NLO cross section 336.318

Graph	Cross Sect(fb)	Error(fb)	Events (K)	Eff Unwgt	Luminosity
	NLO CONTRIBI	JTION: TRE	E-LEVEL SQ	UARED	
P1_gg_titix	187.220	0.438	0	0.0	0.00
P1_uux_titix	22.421	0.029	0	0.0	0.00
P1_uxu_titix	22.411	0.029	0	0.0	0.00
to	tal NLO (tree-lev	el squared	= 232.0519	200000000000000000000000000000000000000	
	I	EADING C	RDER		
P0 gg titix	150.570	0.348	0	0.0	0.00
P0_uux_titix	26.833	0.035	0	0.0	0.00
PO uxu titix	26.818	0.035	0	0.0	0.00
	total LC	= 204.221	0000000000	3	
	NLO COM	TRIBUTIO	N: Virtual pa	rt	
P2_gg_titixg	104.190	0.448	0	0.0	0.00
P2_uux_titixg	2.366	0.013	0	0.1	0.00
P2_uxu_titixg	2.119	0.012	0	0.1	0.00
P2_gux_titixux	-0.293	0.003	0	0.0	0.00
P2_uxg_titixux	<u>-0.298</u>	0.003	0	0.0	0.00
P2_gu_titixu	-1.195	0.043	0	0.0	0.00
P2_ug_titixu	-1.312	0.044	0	0.0	0.00
	total NLO (virtu	ual part)= :	05.57695000	0000001	
	NLO CO	NTRIBUTI	DN: Real part		
P3_gg_titixg	1.523	0.024	0	0.2	0.00
P3_uux_titixa	0.689	0.003	0	0.0	0.00
P3_uxu_titixg	0.688	0.003	0	0.0	0.00
P3 gux titixux	-0.111	0.001	0	0.0	0.00
P3_uxg_titixux	-0.112	0.001	0	0.0	0.00
P3 ug titixu	-1.986	0.014	0	0.0	0.00

♠ And the user retrieves the results !

Automated NLO BSM phenomenology

First complete fully automated NLO calculations of BSM $2 \rightarrow 2$

MadGolem – performance

Automated NLO BSM phenomenology

First complete fully automated NLO calculations of BSM $2 \rightarrow 2$

MadGolem – performance

Automated NLO BSM phenomenology

First complete fully automated NLO calculations of BSM $2 \rightarrow 2$

BSM phenomenology @ NLO

- Total NLO rates and K factors
- unconstrained Parameter space surveys
- Anatomy of the NLO quantum effects separated contributions for each one-loop topology & partonic sub-channel
- Analytical expression for the one-loop amplitudes
- Scale dependences
- NLO distributions & comparison to jet merging

Outline

- MadGolem a 3-slide overview
- 2 MadGolem architecture
- 3 MadGolem performance
- MadGolem an application: MSSM 3rd generation

5 Summary

Phenomenological case

Light 3rd generation squarks are motivated

- Unconstrained MSSM no high-scale relations
- Higgs physics a viable non-decoupling SUSY Higgs sector Han et al. ['13]
- Astrophysics & Cosmology EW phase transition & baryogenesis
- Experimentally :
 - Compelling decay patterns eventually rich in t/b
 - t/b-rich final-states from \tilde{g} decays
 - Loose mass constraints (e.g. for compressed m_{t̃1} − m_{χ1} spectra)

Benchmarks

Benchmarks

	$m_{\tilde{t}_1}$	$m_{\tilde{t}_2}$	$m_{\tilde{b}_1}$	$m_{\tilde{b}_2}$	$m_{\chi^0_1}$	$m_{\chi_1^-}$	$m_{ ilde{g}}$
NSUSY1	434.93	990.31	891.56	1356.94	216.79	222.60	3202.64
NSCMSSM-10.2.2	398.43	682.54	155.16	303.00	231.32	425.38	1354.71
Light1	374.43	2022.88	387.88	2011.63	301.30	498.87	1102.32

$\tilde{t}\tilde{t}^*$ & $\tilde{b}\tilde{b}^*$ @ NLO: rates [preliminary]

(all rates in fb)

$\tilde{t}\tilde{t}^*$ & $\tilde{b}\tilde{b}^*$ @ NLO: rates [preliminary]

	p	$p \to \tilde{t}_1 \tilde{t}_1$		$pp ightarrow ilde{b}_1 ilde{b}_1$			
	σ^{LO}	$\sigma^{\sf NLO}$	K	σ^{LO}	$\sigma^{\sf NLO}$	K	
NSUSY1	11.56	224.40	1.88	2.62	7.01	2.67	
NSUSY2	0.63	0.92	1.45	0.63	1.49	2.35	
NSUSY3	214.91	281.91	1.32	2.62	9.03	3.45	
NSCMSSM-10.2.2	2.11×10^2	3.38×10^2	1.60	4.17×10^4	$6.12 imes 10^4$	1,47	
NSCMSSM-40.2.2	$2.69 imes 10^3$	$4.61 imes 10^3$	1.64	47.32	80.95	1.71	
NSCMSSM-40.3.2	7.86×10^2	1.25×10^4	1.59	0.16	0.31	1.93	
Light1	$3.00 imes 10^3$	4.95×10^2	1.65	1.93×10^3	$3.02 imes 10^3$	1.57	

(all rates in fb)

$\tilde{t}\tilde{t}^*$ & $\tilde{b}\tilde{b}^*$ @ NLO: distributions [preliminary]

$\tilde{t}\tilde{\chi}^-$ @ NLO [preliminary]

Automated $\tilde{t}\chi_1^-$ production to NLO

4 versus 5 active flavors

Automated $\tilde{t}\chi_1^-$ production to NLO

4 versus 5 active flavors

• final-state b-quarks

4 versus 5 active flavors

Automated on-shell subtraction

Automated $\tilde{t}\chi_1^-$ production to NLO

Automated on-shell subtraction

Automated $\tilde{t}\chi_1^-$ production to NLO

Automated on-shell subtraction

Beenakker, Höpker, Spira, Zerwas ['99]

- MadGolem a 3-slide overview
- 2 MadGolem architecture
- 3 MadGolem performance
- MadGolem an application: MSSM 3rd generation

5 Summary

- $\bullet\,$ Automated NLO cross-sections & distributions for $2 \rightarrow 2$ processes
- Highly modular, independent add-on to MadGraph/MadEvent
- Analytical, Feynman-diagrammatic one-loop amplitudes
- Automated renormalization & subtraction

- ${\color{black}\bullet}$ Automated NLO cross-sections & distributions for $2\rightarrow 2$ processes
- Highly modular, independent add-on to MadGraph/MadEvent
- Analytical, Feynman-diagrammatic one-loop amplitudes
- Automated renormalization & subtraction

- ${\color{black}\bullet}$ Automated NLO cross-sections & distributions for $2\rightarrow 2$ processes
- Highly modular, independent add-on to MadGraph/MadEvent
- Analytical, Feynman-diagrammatic one-loop amplitudes
- Automated renormalization & subtraction

- ${\color{black}\bullet}$ Automated NLO cross-sections & distributions for $2\rightarrow 2$ processes
- Highly modular, independent add-on to MadGraph/MadEvent
- Analytical, Feynman-diagrammatic one-loop amplitudes
- Automated renormalization & subtraction

- ${\color{black}\bullet}$ Automated NLO cross-sections & distributions for $2\rightarrow 2$ processes
- Highly modular, independent add-on to MadGraph/MadEvent
- Analytical, Feynman-diagrammatic one-loop amplitudes
- Automated renormalization & subtraction
- Tailored for BSM & NLO studies

- $\bullet~$ Automated NLO cross-sections & distributions for $2 \rightarrow 2~{\rm processes}$
- Highly modular, independent add-on to MadGraph/MadEvent
- Analytical, Feynman-diagrammatic one-loop amplitudes
- Automated renormalization & subtraction

- $\bullet~$ Automated NLO cross-sections & distributions for $2 \rightarrow 2~{\rm processes}$
- Highly modular, independent add-on to MadGraph/MadEvent
- Analytical, Feynman-diagrammatic one-loop amplitudes
- Automated renormalization & subtraction

• Tailored for BSM & NLO studies

Standalones for numerical evaluation available upon request !