

Searches for gluino-mediated production of third generation squarks with the ATLAS detector

Marcello Barisonzi^a on behalf the ATLAS Collaboration

^a Bergische Universität Wuppertal

Natural SUSY

- New particles are needed to cancel out the divergent loop corrections to the mass of the Higgs boson.
- The "naturalness" argument suggests that the new particles are relatively light and may be within discovery reach of the LHC experiments

 <u>As a consequence, light stops and sbottoms</u> <u>can be produced with large cross-sections at</u> <u>LHC</u>

At tree-level: Higgsino < ~350 GeV One loop: stop < ~1 TeV Two loops: gluino < ~2 TeV

Production and decay modes

- Production of 3rd generation squarks either direct (see P. Jackson's talk) or from gluinopair decay
- For Natural SUSY (light 3rd gen. squarks), branching fraction from gluino decay ~100%
- Very rich signature from 3rd gen. SM quark decay chains, including:
 - Large missing transverse momentum
 - Multiple jets
 - 0-4 b-tagged jets
 - Multiple leptons, possible same-sign pairs
- Wide range of signatures allows for several analysis covering the same topic

Mapping SUSY

ATLAS SUSY Searches* - 95% CL Lower Limits

Status: EPS 2013

BERGISCHE

UNIVERSITÄ

	Model	e, μ, τ, γ	Jets	E_{T}^{miss}	∫£ dt[fb	¹] Mass limit	·	Reference
Inclusive Searches	$ \begin{array}{l} \text{MSUGRA/CMSSM} \\ \text{MSUGRA/CMSSM} \\ \text{MSUGRA/CMSSM} \\ \tilde{q}\tilde{q}, \tilde{q} \rightarrow q \tilde{\chi}_{1}^{0} \\ \tilde{g}\tilde{g}, \tilde{g} \rightarrow q \tilde{q} \tilde{\chi}_{1}^{0} \\ \tilde{g}\tilde{g}, \tilde{g} \rightarrow q q \tilde{\chi}_{1}^{0} \rightarrow q q W^{\pm} \tilde{\chi}_{1}^{0} \\ \tilde{g}\tilde{g} \rightarrow q q q q \ell \ell (\ell \ell) \tilde{\chi}_{1}^{0} \tilde{\chi}_{1}^{0} \\ \text{GMSB} (\tilde{\ell} \text{ NLSP}) \\ \text{GMSB} (\tilde{\ell} \text{ NLSP}) \\ \text{GGM (wino NLSP)} \\ \text{GGM (wino NLSP)} \\ \text{GGM (higgsino-bino NLSP)} \\ \text{GGM (higgsino NLSP)} \\ \text{GGM (higgsino NLSP)} \\ \end{array} $	$\begin{matrix} 0 \\ 1 \ e, \mu \\ 0 \\ 0 \\ 1 \ e, \mu \end{matrix} \\ \begin{matrix} 2 \ e, \mu \end{matrix} \\ \begin{matrix} 2 \ e, \mu \end{matrix} \\ \begin{matrix} 1 - 2 \ \tau \\ 2 \ \gamma \end{matrix} \\ \begin{matrix} 1 \ e, \mu + \gamma \\ \gamma \end{matrix} \\ \begin{matrix} 2 \ e, \mu \ (Z) \end{matrix}$	2-6 jets 3-6 jets 7-10 jets 2-6 jets 2-6 jets 3-6 jets 3 jets 2-4 jets 0-2 jets 0 1 b 0-3 jets	Yes Yes Yes Yes Yes Yes Yes Yes Yes Yes	20.3 20.3 20.3 20.3 20.3 20.3 20.3 20.7 4.7 20.7 4.8 4.8 4.8 5.8	4, ğ 1.7 TeV m ğ 1.2 TeV a ğ 1.1 TeV a ğ 740 GeV m ğ 1.1 TeV a ğ 1.3 TeV m ğ 1.3 TeV m ğ 1.3 TeV m ğ 1.1 TeV m ğ 1.1 TeV m ğ 1.1 TeV m ğ 1.2 TeV m ğ 1.2 TeV m ğ 1.2 TeV m ğ 1.07 TeV m ğ 619 GeV m ğ 690 GeV m	$\begin{split} &(\tilde{q}) = m(\tilde{g}) \\ &ny \ n(\tilde{g}^{1}) = 0 \ GeV \\ &(\tilde{\chi}_{1}^{0}) = 0 \ GeV \\ &(\tilde{\chi}_{1}^{0}) < e0 \ GeV \\ &n(\tilde{g}^{1}) < e50 \ GeV \\ &n\beta < 18 \\ &(\tilde{\chi}_{1}^{0}) > s0 \ GeV \\ &(\tilde{\chi}_{1}^{0}) > c0 \ GeV \\ &(\tilde{\chi}_{1}^{0}) = c0 \ GeV \\ &($	ATLAS-CONF-2013-047 ATLAS-CONF-2013-052 ATLAS-CONF-2013-054 ATLAS-CONF-2013-047 ATLAS-CONF-2013-047 ATLAS-CONF-2013-062 ATLAS-CONF-2013-026 1209.0753 ATLAS-CONF-2012-144 1211.1167 ATLAS-CONF-2012-152
3 rd gen. ĝ med.	$ \begin{split} \tilde{g} &\rightarrow b \bar{b} \tilde{\chi}_1^0 \\ \tilde{g} &\rightarrow t \bar{t} \tilde{\chi}_1^0 \\ \tilde{g} &\rightarrow t \bar{t} \tilde{\chi}_1^0 \\ \tilde{g} &\rightarrow b \bar{t} \tilde{\chi}_1^+ \end{split} $	0 0 0-1 <i>e</i> ,μ 0-1 <i>e</i> ,μ	3 <i>b</i> 7-10 jets 3 <i>b</i> 3 <i>b</i>	Yes Yes Yes Yes	20.1 20.3 20.1 20.1	ğ 1.2 TeV m ğ 1.14 TeV m ğ 1.34 TeV m ğ 1.3 TeV m	$(\tilde{k}_1^0) < 600 \text{ GeV}$ $(\tilde{k}_1^0) < 200 \text{ GeV}$ $(\tilde{k}_1^0) < 400 \text{ GeV}$ $(\tilde{k}_1^0) < 300 \text{ GeV}$ = 0	ATLAS-CONF-2013-061 ATLAS-CONF-2013-054 ATLAS-CONF-2013-061 ATLAS-CONF-2013-061
3 rd gen. squarks direct production	$ \begin{array}{l} \tilde{b}_{1}\tilde{b}_{1}, \ \tilde{b}_{1} \rightarrow t \tilde{K}_{1}^{\pm} \\ \tilde{t}_{1}\tilde{t}_{1}(\text{light}), \ \tilde{t}_{1} \rightarrow b \tilde{\chi}_{1}^{\pm} \\ \tilde{t}_{1}\tilde{t}_{1}(\text{light}), \ \tilde{t}_{1} \rightarrow W b \tilde{\chi}_{1}^{0} \\ \tilde{t}_{1}\tilde{t}_{1}(\text{medium}), \ \tilde{t}_{1} \rightarrow t \tilde{\chi}_{1}^{0} \\ \tilde{t}_{1}\tilde{t}_{1}(\text{medium}), \ \tilde{t}_{1} \rightarrow t \tilde{\chi}_{1}^{0} \\ \tilde{t}_{1}\tilde{t}_{1}(\text{heavy}), \ \tilde{t}_{1} \rightarrow t \tilde{\chi}_{1}^{0} \\ \tilde{t}_{1}\tilde{t}_{1}(\text{heavy}), \ \tilde{t}_{1} \rightarrow t \tilde{\chi}_{1}^{0} \\ \tilde{t}_{1}\tilde{t}_{1}(\text{heavy}), \ \tilde{t}_{1} \rightarrow t \tilde{\chi}_{1}^{0} \\ \tilde{t}_{1}\tilde{t}_{1}(\text{heavy}) = \tilde{t}_{1} \rightarrow t \tilde{t}_{1} \\ \tilde{t}_{1}\tilde{t}_{2}(\text{p}, \tilde{t}_{2} \rightarrow \tilde{t}_{1} + Z \end{array} \right) $	$\begin{array}{c} 2 \ e, \mu \ (\text{SS}) \\ 1 - 2 \ e, \mu \\ 2 \ e, \mu \\ 0 \\ 1 \ e, \mu \\ 0 \\ 0 \\ 0 \\ 2 \ e, \mu \ (Z) \end{array}$	0-3 <i>b</i> 1-2 <i>b</i> 0-2 jets 2 <i>j</i> ets 2 <i>b</i> 1 <i>b</i> 2 <i>b</i> ono-jet/ <i>c</i> -t 1 <i>b</i> 1 <i>b</i>	Yes Yes Yes Yes Yes Yes ag Yes Yes Yes	20.7 4.7 20.3 20.3 20.1 20.7 20.5 20.3 20.7 20.7	$\begin{tabular}{ c c c c c } \hline b_1 & $430 \ GeV & m \\ \hline t_1 & $167 \ GeV & m \\ \hline t_1 & $220 \ GeV & m \\ \hline t_1 & $225-525 \ GeV & m \\ \hline t_1 & $150-580 \ GeV & m \\ \hline t_1 & $200-610 \ GeV & m \\ \hline t_1 & $200-610 \ GeV & m \\ \hline t_1 & $200 \ GeV & m \\ \hline t_1 & $200 \ GeV & m \\ \hline t_2 & $520 \ GeV & m \\ \hline \end{tabular}$	$\begin{split} & (\tilde{t}_1^{*}) = 2 \ m(\tilde{k}_1^{0}) \\ & (\tilde{t}_1^{0}) = 55 \ \text{GeV} \\ & (\tilde{t}_1^{0}) = m(\tilde{t}_1) \cdot m(W) \cdot 50 \ \text{GeV}, \ m(\tilde{t}_1) < < m(\tilde{k}_1^{+}) \\ & (\tilde{t}_1^{0}) = 0 \ \text{GeV} \\ & (\tilde{t}_1^{0}) - m(\tilde{k}_1^{0}) < 85 \ \text{GeV} \\ & (\tilde{t}_1^{0}) - 150 \ \text{GeV} \\ & (\tilde{t}_1^{0}) = 150 \ \text{GeV} \\ & (\tilde{t}_1^{0}) = m(\tilde{t}_1^{0}) + 180 \ \text{GeV} \end{split}$	ATLAS-CONF-2013-007 1208.4305, 1209.2102 ATLAS-CONF-2013-048 ATLAS-CONF-2013-053 ATLAS-CONF-2013-053 ATLAS-CONF-2013-024 ATLAS-CONF-2013-024 ATLAS-CONF-2013-025 ATLAS-CONF-2013-025
EW direct	$ \begin{array}{c} \tilde{\ell}_{L,R}\tilde{\ell}_{L,R}, \tilde{\ell} \rightarrow \ell \tilde{\chi}_{1}^{0} \\ \tilde{\chi}_{1}^{+}\tilde{\chi}_{1}^{-}, \tilde{\chi}_{1}^{+} \rightarrow \tilde{\ell} \nu(\ell \tilde{\nu}) \\ \tilde{\chi}_{1}^{+}\tilde{\chi}_{1}^{-}, \tilde{\chi}_{1}^{+} \rightarrow \tilde{\nu} \nu(\tilde{\nu}) \\ \tilde{\chi}_{1}^{+}\tilde{\chi}_{2}^{0} \rightarrow \tilde{\ell}_{L} \nu \tilde{\ell}_{L} \ell(\tilde{\nu}), \ell \tilde{\nu} \tilde{\ell}_{L} \ell(\tilde{\nu}\nu) \\ \tilde{\chi}_{1}^{+}\tilde{\chi}_{2}^{0} \rightarrow W^{*} \tilde{\chi}_{1}^{0} Z^{*} \tilde{\chi}_{1}^{0} \end{array} $	2 e, μ 2 e, μ 2 τ 3 e, μ 3 e, μ	0 0 0 0 0	Yes Yes Yes Yes Yes	20.3 20.3 20.7 20.7 20.7		$\begin{array}{l} & (\tilde{k}_{1}^{0}) {=} 0 \; \text{GeV} \\ & (\tilde{k}_{1}^{0}) {=} 0 \; \text{GeV}, \; m(\tilde{\ell}, \tilde{r}) {=} 0.5 (m(\tilde{k}_{1}^{\pm}) {+} m(\tilde{k}_{1}^{0})) \\ & (\tilde{k}_{1}^{0}) {=} 0 \; \text{GeV}, \; m(\tilde{\tau}, \tilde{r}) {=} 0.5 (m(\tilde{k}_{1}^{\pm}) {+} m(\tilde{k}_{1}^{0})) \\ & (\tilde{k}_{1}^{0}) {=} 0, \; m(\tilde{\ell}, \tilde{r}) {=} 0.5 (m(\tilde{k}_{1}^{\pm}) {+} m(\tilde{k}_{1}^{0})) \\ & (\tilde{k}_{1}^{\pm}) {=} m(\tilde{k}_{2}^{0}), \; m(\tilde{k}_{1}^{0}) {=} 0, \; sleptons \; decoupled \end{array}$	ATLAS-CONF-2013-049 ATLAS-CONF-2013-049 ATLAS-CONF-2013-028 ATLAS-CONF-2013-035 ATLAS-CONF-2013-035
Long-lived particles	Direct $\tilde{\chi}_1^+ \tilde{\chi}_1^-$ prod., long-lived $\tilde{\chi}_1^+$ Stable, stopped \tilde{g} R-hadron GMSB, stable $\tilde{\tau}, \tilde{\chi}_1^0 \rightarrow \tilde{\tau}(\tilde{e}, \tilde{\mu}) + \tau(e$ GMSB, $\tilde{\chi}_1^0 \rightarrow \gamma \tilde{G}$, long-lived $\tilde{\chi}_1^0$ $\tilde{\chi}_1^0 \rightarrow qq\mu$ (RPV)	Disapp. trk 0 $(\mu) 1-2\mu$ 2γ 1μ	1 jet 1-5 jets 0 0 0	Yes Yes Yes Yes	20.3 22.9 15.9 4.7 4.4	$\tilde{\chi}_1^{\pm}$ 270 GeV m \tilde{g} 857 GeV m $\tilde{\chi}_1^0$ 475 GeV 11 $\tilde{\chi}_1^0$ 230 GeV 00 \tilde{q} 700 GeV 1	$\begin{array}{l} (\tilde{\chi}_1^{+})\text{-m}(\tilde{\chi}_1^{0}) {=} 160 \; \text{MeV}, \; \tau(\tilde{\chi}_1^{+}) {=} 0.2 \; \text{ns} \\ (\tilde{\chi}_1^{0}) {=} 100 \; \text{GeV}, \; 10 \; \mu \text{s} {<} \tau(\tilde{g}) {<} 1000 \; \text{s} \\ 0{<} \tan\beta {<} 50 \\ .4{<} \tau(\tilde{\chi}_1^{0}) {<} 2 \; \text{ns} \\ \text{mm} {<} c\tau {<} 1 \; \text{m}, \; \tilde{g} \; \text{decoupled} \end{array}$	ATLAS-CONF-2013-069 ATLAS-CONF-2013-057 ATLAS-CONF-2013-058 1304.6310 1210.7451
RPV	$ \begin{array}{l} LFV pp \rightarrow \widetilde{v}_{\tau} + X, \widetilde{v}_{\tau} \rightarrow e + \mu \\ LFV pp \rightarrow \widetilde{v}_{\tau} + X, \widetilde{v}_{\tau} \rightarrow e(\mu) + \tau \\ Bilinear \ RPV \ CMSSM \\ \widetilde{x}_1^+ \widetilde{x}_1^-, \widetilde{x}_1^+ \rightarrow \mathcal{W} \widetilde{x}_1^0, \widetilde{x}_1^0 \rightarrow e \widetilde{v}_{\mu}, e \mu \widetilde{v}_{\tau}, \\ \widetilde{x}_1^+ \widetilde{x}_1^-, \widetilde{x}_1^+ \rightarrow \mathcal{W} \widetilde{x}_1^0, \widetilde{x}_1^0 \rightarrow \tau \tau \widetilde{v}_e, e \tau \widetilde{v}_{\tau}, \\ \widetilde{g} \rightarrow qqq \\ \widetilde{g} \rightarrow \widetilde{t}_1 t, \widetilde{t}_1 \rightarrow bs \end{array} $	$2 e, \mu 1 e, \mu + \tau 1 e, \mu 4 e, \mu 3 e, \mu + \tau 0 2 e, \mu (SS)$	0 0 7 jets 0 0 6 jets 0-3 <i>b</i>	- Yes Yes Yes - Yes	4.6 4.7 20.7 20.7 4.6 20.7	$\begin{array}{c c} \overline{v}_r & 1.61 {\rm TeV} & \lambda \\ \overline{v}_r & 1.1 {\rm TeV} & \lambda \\ \overline{q}, \overline{g} & 1.2 {\rm TeV} & m \\ \overline{x}_1^{\pm} & 760 {\rm GeV} & m \\ \overline{x}_1^{\pm} & 350 {\rm GeV} & m \\ \overline{g} & 666 {\rm GeV} & m \\ \overline{g} & 880 {\rm GeV} \end{array}$	$\begin{array}{l} & & (3_{11}=0.10, \lambda_{132}=0.05 \\ & (3_{11}=0.10, \lambda_{1(2)33}=0.05 \\ & ((\tilde{q})=m(\tilde{g}), c\tau_{LSP}<1 \mathrm{mm} \\ & (\lambda_{1}^{(0)})>300 \mathrm{GeV}, \lambda_{121}>0 \\ & (\lambda_{1}^{(0)})>80 \mathrm{GeV}, \lambda_{133}>0 \end{array}$	1212.1272 1212.1272 ATLAS-CONF-2012.140 ATLAS-CONF-2013-036 ATLAS-CONF-2013-036 1210.4813 ATLAS-CONF-2013-007
Other	Scalar gluon WIMP interaction (D5, Dirac χ)	0 0	4 jets mono-jet	Yes	4.6 10.5	sgluon 100-287 GeV in M* scale 704 GeV m	tcl. limit from 1110.2693 χ >80 GeV, limit of <687 GeV for D8	1210.4826 ATLAS-CONF-2012-147
	$\sqrt{s} = 7 \text{ TeV}$	/s = 8 TeV artial data	$\sqrt{s} = \frac{1}{5}$	8 TeV data		10 ⁻¹ 1	Mass scale [TeV]	

*Only a selection of the available mass limits on new states or phenomena is shown. All limits quoted are observed minus 1 σ theoretical signal cross section uncertainty.

Gluino-mediated 3rd gen. squark production at ATLAS

 $\int \mathcal{L} dt = (4.4 - 22.9) \text{ fb}^{-1}$ $\sqrt{s} = 7, 8 \text{ TeV}$

ATLAS Preliminary

2 same-charge leptons + [0-3] b-jets (@8 TeV)

Strategy

- Preselection:
 - Trigger: combination of E_{τ}^{miss} or 1 lepton or 2 leptons.
 - Select at least 2 same-sign isolated leptons (e,µ) with $p_{\tau} > 20 \text{ GeV}$
 - At least 3 central jets with $p_{\tau} > 40 \text{ GeV}$
 - Zero or more b-tagged jets with $p_{T} > 20 \text{ GeV}$
- Divide data in three orthogonal samples according to b-jet multiplicity and introducing S/B optimization cuts based on:

$$-m_{eff} = E_T^{miss} + \sum_{i=1,2} lep_i p_T + \sum_j jet_j p_T$$

- Transverse mass (computed with leading lepton) $m_{\rm T} = \sqrt{2p_{\rm T}E_{\rm T}^{\rm miss}(1-\cos\Delta\phi(\ell,E_{\rm T}^{\rm miss}))}$

 $- E_{T}^{miss}$

• Optimization chosen to target a wide range of diverse models

Signal regions

ATLAS-CONF-2013-007

Non-overlapping signal regions:

	Signal region	N _{b-jets}	Signal cuts (exclusion case)
$\tilde{g} \rightarrow q \; \tilde{q}$	SR0b	0	$N_{\text{jets}} \ge 3, E_{\text{T}}^{\text{miss}} > 150 \text{ GeV}, m_{\text{T}} > 100 \text{ GeV},$
			binned shape fit in m_{eff} for $m_{\text{eff}} > 300 \text{ GeV}$
$\widetilde{g} ightarrow t\widetilde{t}$	SR1b	≥1	$N_{\text{jets}} \ge 3, E_{\text{T}}^{\text{miss}} > 150 \text{ GeV}, m_{\text{T}} > 100 \text{ GeV},$
$\widetilde{g} o \ b \widetilde{b}$			binned shape fit in m_{eff} for m_{eff} >300 GeV
	SR3b	≥3	$N_{\rm jets} \ge 5$,
			$E_{\rm T}^{\rm miss}$ < 150 GeV or $m_{\rm T}$ < 100 GeV
$\widetilde{g} \to b \ \widetilde{b}_{1}^{*} \qquad \qquad$	n compressed Δm	$\widetilde{\chi}_{1}^{\pm},\widetilde{\chi}_{1}^{0}\Big)=$	2 GeV

Backgrounds

 N_{TL}

 N_{LT}

NRR

N_{RF}

 N_{FR}

NFF

ATLAS-CONF-2013-007

 $\zeta_1(1-\varepsilon_2)$

 $(1-\zeta_1)\varepsilon_2$

 $(1 - \zeta_1)(1 - \varepsilon_2)$

 $\begin{array}{c} \varepsilon_1(1-\zeta_2)\\ (1-\varepsilon_1)\zeta_2\\ (1-\varepsilon_1)(1-\zeta_2) \end{array}$

 ς : misidenfication rate, ϵ : real lepton efficiency

 $\varepsilon_1(1-\varepsilon_2)$

 $(1 - \varepsilon_1)\varepsilon_2$

 $\zeta_1 \zeta_2$

 $\zeta_1(1-\zeta_2)$

 $(1-\zeta_1)\zeta_2$

 $(1-\zeta_1)(1-\zeta_2)$

- ttbar+W/Z and dibosons [MC]
- misidentified lepton [data-driven]
 - loose-to-tight matrix method
 - · define tight [nominal] and loose lepton identification criteria
 - measure loose-to-tight efficiency in data
 - · count number of loose and tight leptons in each signal region
 - · estimate misidentified lepton contribution with matrix formula
- charge mis-measurement [data-driven]
 - measure ratio of SS/OS pairs with Z invariant mass

Results

ATLAS-CONF-2013-007

B) Exclusion case	SR0b	SR1b	SR3b
Observed events	5	11	1
Expected background events	7.5 ± 3.2	10.1 ± 3.9	1.8 ± 1.3
Expected $t\bar{t} + V$ events	0.5 ± 0.4	3.4 ± 1.5	0.6 ± 0.4
Expected diboson events	3.4 ± 1.1	1.4 ± 0.7	< 0.1
Expected fake lepton events	3.4 ± 2.9	4.4 ± 3.1	1.0 ± 1.1
Expected charge mis-measurement events	0.2 ± 0.1	0.8 ± 0.3	0.1 ± 0.1

Simultaneous fit to SR0b, SR1b & SR3b

SR0b, SR1b binned in $m_{_{eff}}$

Interpretation

ATLAS-CONF-2013-007

Excluding m_{aluino} < ~1 TeV, largely independently of the stop mass.

29/08/2013

0/1 lepton + 3 b-jets + E^{miss}_T (@8 TeV) ATLAS-CONF-2013-061

ATLAS-CONF-2013-061

- Preselection:
 - Trigger: fully efficient missing transverse momentum trigger (L=20.1 fb⁻¹)
 - Leading jet with p_{T} >90 GeV
 - E_T^{miss}>150 GeV
 - At least 4 jets with p_{T} >30 GeV
 - At least 3 b-tagged jets with p_{τ} >90 GeV 9 (included in above jets)
- Split sample in two:
 - At least 1 tight isolated lepton (e, μ) with p_{T} >20 GeV
 - Lepton veto
- Subdivide the two samples in optimized signal regions, using these variables:
 - $m_{\rm eff}^{\rm incl}$, the scalar sum of $E_{T}^{\rm miss}$ and the p_{T} of all selected jets and leptons (if any)
 - $m_{\rm eff}^{\rm 4j}$, the scalar sum of $E_{\rm T}^{\rm miss}$ and the p_T of the four leading jets
 - $\Delta \phi_{\min}^{4j}$, the minimum azimuthal angle between E_{T}^{miss} and any of the four leading jets
 - Transverse mass $m_{\rm T} = \sqrt{2p_{\rm T}E_{\rm T}^{\rm miss}(1-\cos\Delta\phi(\ell,E_{\rm T}^{\rm miss}))}$

29/08/2013

Signal regions

ATLAS-CONF-2013-061

baseline selection: baseline lepton veto, $p_T^{j_1} > 90$ GeV, $E_T^{\text{miss}} > 150$ GeV, ≥ 4 jets with $p_T > 30$ GeV,

 $\Delta \phi_{\min}^{4j} > 0.5, E_{\mathrm{T}}^{\mathrm{miss}} / m_{\mathrm{eff}}^{4j} > 0.2, \ge 3 \text{ b-jets with } p_T > 30 \text{ GeV}$

	0- <i>l</i> region	N jets	p_T jets [GeV]	$E_{\rm T}^{\rm miss}$ [GeV]	$m_{\rm eff}$ [GeV]	$E_{\mathrm{T}}^{\mathrm{miss}}/\sqrt{H_{\mathrm{T}}^{\mathrm{4j}}} \mathrm{[GeV^{\frac{1}{2}}]}$
	SR-0l-4j-A	≥ 4	> 30	> 200	$m_{\rm eff}^{\rm 4J} > 1000$	> 16
$\widetilde{g} \rightarrow b\widetilde{b}$	SR-01-4j-B	≥ 4	> 50	> 350	$m_{\mathrm{eff}}^{\mathrm{4j}} > 1100$	-
0	SR-01-4j-C	≥ 4	> 50	> 250	$m_{\rm eff}^{\rm 4j} > 1300$	-
	SR-0l-7j-A	≥ 7	> 30	> 200	$m_{\rm eff}^{\rm incl} > 1000$	-
$\widetilde{\varphi} \rightarrow t\widetilde{t}$	SR-0l-7j-B	≥ 7	> 30	> 350	$m_{\rm eff}^{\rm incl} > 1000$	-
0	SR-0l-7j-C	≥ 7	> 30	> 250	$m_{\rm eff}^{\rm incl} > 1500$	-

baseline selection: ≥ 1 signal lepton (*e*, μ), $p_T^{j_1} > 90$ GeV, $E_T^{\text{miss}} > 150$ GeV,

 \geq 4 jets with p_T > 30 GeV, \geq 3 *b*-jets with p_T > 30 GeV

	1- ℓ region	<i>N</i> jets	$E_{\rm T}^{\rm miss}$ [GeV]	<i>m</i> _T [GeV]	$m_{\rm eff}^{\rm incl}$ [GeV]	$E_{\rm T}^{\rm miss} / \sqrt{H_{\rm T}^{\rm incl}} [{\rm GeV}^{\frac{1}{2}}]$
$\widetilde{g} \rightarrow t\widetilde{t}$	SR-11-6j-A	≥ 6	> 175	> 140	> 700	> 5
	SR-11-6j-B	≥ 6	> 225	> 140	> 800	> 5
	SR-11-6j-C	≥ 6	> 275	> 160	> 900	> 5

Backgrounds

ATLAS-CONF-2013-061

- Main backgrounds:
 - reducible: misidentified b-jet [data-driven]
 - loose-to-tight Matrix Method
 - 4 components: real b, misidentified light jet, c-jet, T
 - generalization of lepton matrix method [size: 2^{N(jets)} × 2^{N(jets)}]
 - Irreducible: ttbar + bb (main), ttbar+Z→bb (negl.), ttbar+h→bb (negl.) [MC]
 - Main uncertainty: theoretical cross-section

29/08/2013

Results

ATLAS-CONF-2013-061

Simultaneous fit to 0L and 1L channels for model-dependent exclusion tests.

(Fit on event yields – shapes below for MC/data comparison only)

region	reducible bkg	irreducible bkg	total bkg (MC)	data
SR-01-4j-A	2.2 ± 1.1	0.8 ± 0.7	3.0 ± 1.3 (5.1)	2
SR-01-4j-B	0.8 ± 0.9	0.5 ± 0.5	$1.3 \pm 1.0 \ (3.9)$	3
SR-01-4j-C	1.2 ± 0.8	0.6 ± 0.6	1.8 ± 1.0 (2.5)	2
SR-01-7j-A	15.5 ± 3.4	7.0 ± 6.0	$22.5 \pm 6.9 (28.8)$	22
SR-01-7j-B	2.3 ± 2.3	1.3 ± 1.1	3.6 ± 2.5 (6.2)	3
SR-01-7j-C	$0\pm 0.5^{+0.5}_{-0}$	0.8 ± 0.7	$0.8\pm^{+0.9}_{-0.8}$ (3.1)	1
SR-11-6j-A	$10.7 \substack{+7.5 \\ -6.8}$	4.8 ± 3.7	15.5 ± 8.4 (13.8)	7
SR-11-6j-B	5.7 ± 5.5	1.7 ± 1.4	7.4 ± 5.7 (6.3)	0
SR-11-6j-C	$2.4 {}^{+2.7}_{-2.4}$	$0.6 \ ^{+0.6}_{-0.5}$	3.0 ± 2.8 (2.6)	0

Interpretation

ATLAS-CONF-2013-061

= direct stop searches See talk by P. Jackson

Excluding up to m_{aluino} < ~1.35 TeV, largely independently of the stop mass.

Interpretation

ATLAS-CONF-2013-061

0 leptons + [7-10] jets (@8 TeV)

arXiv:1308.1841 [hep-ex]

29/08/2013

Strategy & Interpretation

arXiv:1308.1841 [hep-ex]

Multijet + E_{τ}^{miss} requirement can catch decay of stop to • all-hadronically decaying SM 3rd gen. quarks

See talk by M. Hohlfeld

Summary

29/08/2013

Summary

29/08/2013

RPV interpretation

- Limits can be set also in more exotic,
- R-parity and baryon-number violating scenarios
- Large gluino mass results in boosted decay products → merged jets

Conclusions

- Gluino-mediated production of 3rd generation squarks motivated by SUSY naturalness
- Feature-rich signature allows combination of complementary analyses
- Limits set are largely independent from stop and sbottom masses
- Results can be interpreted in RPV scenarios
- Sensitivity at large gluino masses increased by using composite jets

Backup

29/08/2013

Matrix method

- Matrix method of estimation of multijet backgrounds faking leptons:
 - Construct four high-statistics control regions with respectively tight (T) and loose (L) lepton definitions: TT,TL,LT,LL
 - The event yields in these regions is correlated to the number of events from real and fake leptons through this matrix:

 ς_i : misidenfication rate, ϵ_i : real lepton efficiency

- By inverting the matrix, one obtains the fake rate estimate from the yields in the control regions
- This method can be generalized to estimate light multijet backgrounds faking b-flavoured jets

Summary

29/08/2013