Search for third generation squarks at CMS

Mariarosaria D'Alfonso (CERN) on behalf of the CMS collaboration

Introduction

The existence of dark matter (DM) is overwhelming but its properties are unknown.

 \rightarrow This motivates us to search for DM candidate in colliders produced in cascade of the others particles.

The Higgs boson with a mass of 125 GeV exists. The EWK breaking mechanism gives a special role to the particles of the third generation.

 \rightarrow This motivates us to search for third generation partners.

Stop/sbottom production

 $\tilde{\chi}_1^0$ or $\tilde{\chi}_1^0$ \tilde{t}^* $\tilde{\chi}_1^0$ P_2 \tilde{b}^* or $\tilde{\chi}_1^0$ \tilde{b}^*

Typical cross section stop/sbottom: 2 pb @ 300 GeV 0.025 pb @ 600 GeV

SM TTbar ~ 230 pb-1

SUSY13, Trieste, 8/29/13

Opposite-sign dileptons (very clean, low BR)

Discriminating variables: MET,MT(I/met) SUS-13-004 (0 lepton /1 e/mu): Discriminating variables: razor

SUS-13-011

- Event pre-selection
 - 1 high p_T isolated e or μ
 - \geq 4 jets with \geq 1 b-jet
 - Veto events with a second lepton
 - Moderate E_T^{miss}
- Search in M_T tail M_T(Q, E_T^{miss}) >> M_W

Main backgrounds

• $t\bar{t} \rightarrow \Omega \Omega$ dominant in M_T tail

- Single lepton backgrounds: tt→ℓ+jets & single top s/t-channel (1ℓ top), W+jets
- Rare processes: mainly tī+W/Z/γ, tW

Discriminating variables

Comparison data vs. MC of the kinematic distributions after event preselection, shows that the MC model well the data.

Discriminating variables

Different signal regions target different decay modes and a range of signal kinematics.

DBT and cut based analysis in place

	$ ilde{\mathfrak{t}} o \mathfrak{t} \widetilde{\chi}_1^0$			$ ilde{\mathfrak{t}} o {\mathfrak{b}} \widetilde{\chi}_1^+$					
		cut-b	ased		cut-based				
Selection	BDT	Low ΔM	High ΔM	BDT	Low ΔM	High ΔM			
$E_{\rm T}^{\rm miss}({ m GeV})$	yes	> 150, 200,	> 150, 200,	yes	> 100, 150,	> 100, 150,			
		250, 300	250, 300		200, 250	200, 250			
M_{T2}^W (GeV)	yes		> 200	yes		> 200			
$\min \Delta \phi$	yes	> 0.8	> 0.8	yes	> 0.8	> 0.8			
H_{T}^{ratio}	yes			yes					
hadronic top χ^2	(on-shell top)	< 5	< 5	-					
leading b-jet p_{T} (GeV)	(off-shell top)			yes		> 100			
$\Delta R(\ell, \text{leading b-jet})$				yes					
lepton $p_{\rm T}$				(off shell W)					
SUSY13, Trieste, 8/29/13 M.D'Alfonso (CERN) 8									

Discriminating variables

SUSY13, Trieste, 8/29/13

Control region data/MC comparison

Estimate backgrounds from MC \rightarrow normalized to the MT peak MT tails validated with control samples \rightarrow extract scale factor.

Control region data/MC comparison

Estimate backgrounds from MC \rightarrow normalized to the MT peak MT tails validated with control samples \rightarrow extract scale factor.

SUSY13, Trieste, 8/29/13

Control region data/MC comparison

Estimate backgrounds from MC \rightarrow normalized to the MT peak MT tails validated with control samples \rightarrow extract scale factor.

Extrapolation for the ttbar 1l

Results

${ ilde t} o t { ilde \chi}_1^0$										
Sample	BDT1 Loose	BDT1 Tight	BDT2	BDT3	BDT4	BDT5				
$t\bar{t} ightarrow \ell\ell$	438 ± 37	68 ± 11	46 ± 10	5 ± 2	0.3 ± 0.3	48 ± 13				
1ℓ Top	251 ± 93	37 ± 17	22 ± 12	4 ± 3	0.8 ± 0.9	30 ± 12				
W+jets	27 ± 7	7 ± 2	6 ± 2	2 ± 1	0.8 ± 0.3	5 ± 2				
Rare	47 ± 23	11 + 6	10 ± 5	3 + 1	1.0 ± 0.5	4 + 2				
Total	763 ± 102	124 ± 21	85 ± 16	13 ± 4	2.9 ± 1.1	87 ± 18				
Data	728	104	56	8	2	76				
$\tilde{t} \rightarrow t \tilde{\chi}_1^0 (250/50)$	285 ± 8.5	50 ± 3.5	28 ± 2.6	4.4 ± 1.0	0.3 ± 0.3	34 ± 2.9				
$\tilde{t} \rightarrow t \tilde{\chi}_1^0 \ (650/50)$	12 ± 0.2	7.2 ± 0.2	9.8 ± 0.2	6.5 ± 0.2	4.3 ± 0.1	2.9 ± 0.1				

Data are consistent with the prediction

SUS-13-011 interpretation

SUSY13, Trieste, 8/29/13

SUS-13-011 http://arxiv.org/abs/1308.1586 Interpretation of our results (1)

Different mass hierarchies are investigated.

SUS-13-011 http://arxiv.org/abs/1308.1586 Interpretation of our results (2)

Small variation of the cross section UL for fully left and right handed polarized tops

SUS-13-011 http://arxiv.org/abs/1308.1586 Interpretation of our results (2)

razor

Ъ 0.09 CMS Simulation $\sqrt{s} = 8 \text{ TeV}$ Razor MultiJet Box $L = 19.3 \text{ fb}^{-1}$ 0.08 $pp \rightarrow \tilde{t}\tilde{t}, \tilde{t} \rightarrow t\tilde{\chi}^0, \sigma = 0.01 \text{ pb}$ 0.07 m₇ = 800 GeV, m₂ = 25 GeV 0.8 0.06 0.05 0.04 0.5 0.03 0.02 0.3 0.01 0 3000 500 1000 2000 M_R [GeV] 50 Ъ CMS Simulation Is = 8 TeV 45 Razor MultiJet Box L = 19.3 fb⁻¹ SM Backgrounds tt+jets, W/Z+jets 40 35 0.8 30 . 25 0.5 20 15 10 0.3 5 500 2000 3000 1000 M.D' 19 M_R[GeV]

Cluster all objects in one events into two megajets

Reduce the pz impact by boosting to the rest frame in two megajets-system

$$M_R \equiv \sqrt{(E_{j_1} + E_{j_2})^2 - (p_z^{j_1} + p_z^{j_2})^2}$$

Divide MET equally for each decay chain

$$M_T^R \equiv \sqrt{\frac{E_T^{miss}(p_T^{j1} + p_T^{j2}) - \vec{E}_T^{miss} \cdot (\vec{p}_T^{j1} + \vec{p}_T^{j2})}{2}}$$
$$R \equiv \frac{M_T^R}{M_R}$$

SUSY13, Trieste, 8/29/13

SUS-13-004

https://twiki.cern.ch/twiki/bin/view/CMSPublic/PhysicsResultsSUS13004

summary direct stop production

SUSY13, Trieste, 8/29/13

Other possibilities covered too

Other possibilities covered too

CMS Preliminary, 19.5 fb⁻¹, √s = 8 TeV

 $pp \rightarrow \widetilde{b}_{1}\widetilde{b}_{1}^{\star}, \widetilde{b}_{1} \rightarrow tW \widetilde{\chi}_{1}^{0}$ NLO+NLL exclusion

Expected $\pm 1\sigma_{\text{experiment}} m_{\tilde{\gamma}^0}/m_{\tilde{\gamma}^+} = 0.5$

10³

10²

Direct to LSP

SUS-13-011

SUS-13-004

D

WW

SUS-13-013

>= SS + b

350 Observed $\pm 1 \sigma_{\text{theory}}$

400

300

250

200

(GeV)

m_{LSP} (

 $\tilde{\chi}_1^0$

ZZ

Final states See SUS-13-028 J.Thompson SUS-13-013 M.Buchmann

Summary and conclusions

- Dedicated searches for the 3rd generation squarks started at 7 TeV with 5 fb⁻¹.
- Progressively covering more phase space at 8 TeV.
 - Covered different decay modes with different signatures.
 - More updates coming soon.
- > Looking forward to the 14 TeV run.

backup

Discriminating variables

sus-13-011 http://arxiv.org/abs/1308.1586 Interpretation of our results

Investigated DATA/MC comparison for the ttbar recoil system. The signal acceptance are corrected.

SUS-13-011 http://arxiv.org/abs/1308.1586 More on polarization

Top polarization in stop decay depends on left/right stop mixing and the LSP composition.

The top polarization to left-handed and right handed scenario has impact on the lepton $p_{\rm T}$ and $M_{\rm T}$.

SUS-13-004 https://twiki.cern.ch/twiki/bin/view/CMSPublic/PhysicsResultsSUS13004

-1 b-tag

1.2

1.4 R^2

RAZOR

SUS-13-004

SUS-12-028 https://twiki.cern.ch/twiki/bin/view/CMSPublic/PhysicsResultsSUS12028

Other stops bounds

SUS-12-028 - alphaT

SUSY13, Trieste, 8/29/13

SUS-13-013/SUS-13-008

https://twiki.cern.ch/twiki/bin/view/CMSPublic/PhysicsResultsSUS13013 https://twiki.cern.ch/twiki/bin/view/CMSPublic/PhysicsResultsSUS13008

SUSY13, Trieste, 8/29/13