Stop and sbottom search using dileptonic M_{T2} variable and boosted top technique at the LHC

Dilip Kumar Ghosh (IACS, Kolkata, India)

SUSY2013, ICTP, Trieste, Italy

arXiv:1303.5776 [hep-ph], collaborators : A. Chakraborty, D. Ghosh and D. Sengupta

Dilip Kumar Ghosh (IACS)

Stop and sbottom search

- Introduction
- Current status and Our Strategy
- Choice of model parameters and Benchmark Points
- Collider analysis and results
- Summary

Introduction

- Observation of a new particle at the LHC with mass $m_h \sim 125$ GeV compatible with the SM Higgs.
- This mass value agrees well with prediction of MSSM.
- In MSSM, the large quadratic divergence in m_h^2 due to top quark loop is cancelled by the scalar partner of top quarks (called stop \tilde{t}_i , with i = 1, 2).
- Stop sector plays a crucial role in determining the Higgs mass → the experimental determination of the stop properties is crucial to understand the nature of SUSY protecting the Higgs mass at EW scale.
- So far LHC has not seen any evidence of SUSY particles, only lower bounds have been put on different SUSY particles.
- Limits on gluino (\tilde{g}) and squarks (\tilde{q}) currently stands at about 1.5 TeV for $m_{\tilde{g}} \simeq m_{\tilde{q}}$ and about 1.2 TeV for $m_{\tilde{g}} \ll m_{\tilde{q}}$.

CMS SUSY exclusion

ATLAS SUSY exclusion

ATLAS SUSY Searches* - 95% CL Lower Limits

e, μ, τ, γ, lets E^{miss} (r dtfb⁻¹)

Status: EPS 2013 Model

ATLAS Preliminary

 $\int \mathcal{L} dt = (4.4 - 22.9) \text{ fb}^{-1}$ $\sqrt{s} = 7, 8 \text{ TeV}$

	$\sqrt{s} = 7 \text{ TeV}$ full data	s = 8 TeV artial data	$\sqrt{s} = 8$ full d	TeV ata		10 1 Mass scale [TeV]	
Other	Scalar gluon WIMP interaction (D5, Dirac χ)	0	4 jets mono-jet	Yes	4.6 10.5	I sgluan 100-287 GeV ind. inter teres 1110.2803 m(g)-680 GeV, timt of-687 GeV for D6	1210.4826 ATLAS-CONF-2012-147
RPV	$ \begin{array}{l} LFV \ pp \mapsto \widetilde{r}_r + X, \ \widetilde{r}_r \mapsto e + \mu \\ LFV \ pp \mapsto \widetilde{r}_r + X, \ \widetilde{r}_r \mapsto e(\mu) + \tau \\ Binear \ RPV \ CMSM \\ \widetilde{X}_1^+ \widetilde{X}_1^-, \ \widetilde{X}_1^+ \to W \widetilde{Y}_1^0, \ \widetilde{X}_1^0 \to eer \widetilde{r}_{\mu}, \ eur \\ \widetilde{X}_1^+ \widetilde{X}_1^-, \ \widetilde{X}_1^+ \to W \widetilde{Y}_1^0, \ \widetilde{X}_1^0 \to err \\ \widetilde{X}_1^+ \widetilde{X}_1^-, \ \widetilde{X}_1^+ \to W \widetilde{Y}_1^0, \ \widetilde{X}_1^0 \to err \\ \widetilde{g} \to qq_1 \\ \widetilde{g} \to qq_1 \\ \widetilde{g} \to q_1, \ \widetilde{r}_1 \to bs \end{array} $	$\begin{array}{c} 2 \ e, \mu \\ 1 \ e, \mu + \tau \\ 1 \ e, \mu \\ e \ 4 \ e, \mu \\ 3 \ e, \mu + \tau \\ 0 \\ 2 \ e, \mu (SS) \end{array}$	0 0 7 jets 0 0 6 jets 0-3 <i>b</i>	Yes Yes Yes Yes	4.6 4.6 4.7 20.7 20.7 4.6 20.7	5. 143 TeV 7. 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4	1212.1272 1212.1272 ATLAS-CONF-2012-140 ATLAS-CONF-2013-036 ATLAS-CONF-2013-036 1210.4813 ATLAS-CONF-2013-007
Long-fved	Direct $\tilde{x}_1^{\dagger} \tilde{x}_1^{-}$ prod., long-lived \tilde{x}_1^{\dagger} Stable, stopped \tilde{g} R-hadron GMSB, stable $\tilde{\tau}, \tilde{x}_1^{0} \rightarrow \tilde{\tau}(\tilde{u}, \tilde{\mu})_{\pm} \tau(e$ GMSB, $\tilde{x}_1^{0} \rightarrow \gamma \tilde{G}$, long-lived \tilde{x}_1^{0} $\tilde{\chi}_1^{0} \rightarrow qq\mu$ (RPV)	Disapp. trk 0 t, μ) 1-2 μ 2 γ 1 μ	1 jet 1-5 jets 0 0 0	Ybs Ybs Ybs Ybs	20.3 22.9 15.9 4.7 4.4	Image: Constraint of the state of	ATLAS-CONF-2013-069 ATLAS-CONF-2013-057 ATLAS-CONF-2013-058 1304.6310 1210.7451
EW	$\begin{array}{c} \tilde{t}_{1,0} \tilde{t}_{1,R}, \tilde{t} \rightarrow \tilde{t} \tilde{\tau}_{1}^{0} \\ \tilde{x}_{1}^{\dagger} \tilde{x}_{1}^{\dagger}, \tilde{x}_{1}^{\dagger} \rightarrow \tilde{t} \tau (\tilde{\tau}) \\ \tilde{x}_{1}^{\dagger} \tilde{x}_{1}^{\dagger}, \tilde{x}_{1}^{\dagger} \rightarrow \tilde{\tau} \tau (\tilde{\tau}) \\ \tilde{x}_{1}^{\dagger} \tilde{x}_{2}^{\dagger} \rightarrow \tilde{t} v \tilde{v}_{1} v \tilde{t} (\tilde{t} v), t \tilde{\tau} \tilde{t}_{1} t (\tilde{v}) \\ \tilde{x}_{1}^{\dagger} \tilde{x}_{2}^{\dagger} \rightarrow \tilde{t} v \tilde{t}^{\dagger} \tilde{t} (\tilde{\tau} v) \\ \tilde{x}_{1}^{\dagger} \tilde{x}_{2}^{\dagger} \rightarrow \tilde{t} v \tilde{t}^{\dagger} \tilde{t} (\tilde{\tau} v) \end{array}$	2 e, µ 2 e, µ 2 τ 3 e, µ 3 e, µ	0 0 0 0	Yes Yes Yes Yes Yes	20.3 20.3 20.7 20.7 20.7	85-315 GeV m(1):b0W 12 125-450 GeV m(1):b0W 12 125-450 GeV m(1):b0W 12 180-300 GeV m(1):b0DW 2 100 GeV m(1):b0DW 2 100 GeV m(1):b0DW 2 800 GeV m(1):b0DW 2 315 GeV m(1):b0DW	ATLAS-CONF-2013-049 ATLAS-CONF-2013-049 ATLAS-CONF-2013-028 ATLAS-CONF-2013-035 ATLAS-CONF-2013-035
3 rd gen. squarks direct production	$ \begin{array}{l} & \tilde{b}_{1}, \tilde{b}_{1}, \tilde{b}_{1} \rightarrow b\tilde{t}_{1}^{Q} \\ & \tilde{b}_{2}, \tilde{b}_{1}, \tilde{b}_{1} \rightarrow b\tilde{t}_{1}^{Q} \\ & \tilde{b}_{2}, \tilde{b}_{1}, \tilde{b}_{2} \rightarrow b\tilde{t}_{1}^{Q} \\ & \tilde{t}_{2}, \tilde{t}_{1}(\tilde{q})\tilde{d}_{1}, \tilde{t}_{2} \rightarrow b\tilde{t}_{1}^{Q} \\ & \tilde{t}_{1}, \tilde{t}_{1}(\tilde{q})\tilde{d}_{1}, \tilde{t}_{2} \rightarrow b\tilde{t}_{1}^{Q} \\ & \tilde{t}_{1}, \tilde{t}_{1}(\tilde{q})\tilde{d}_{1}, \tilde{t}_{2} \rightarrow b\tilde{t}_{1}^{Q} \\ & \tilde{t}_{1}, \tilde{t}_{1}(\tilde{q})\tilde{d}_{2}, \tilde{t}_{2} \rightarrow b\tilde{t}_{1}^{Q} \\ & \tilde{t}_{2}, \tilde{t}_{2}, \tilde{t}_{2} \rightarrow b\tilde{t}_{1}^{Q} \\ & \tilde{t}_{1}, \tilde{t}_{1}(\tilde{t})\tilde{t}_{1}) \\ & \tilde{t}_{1}, \tilde{t}_{1}(\tilde{t})\tilde{t}_{1}) \\ & \tilde{t}_{1}, \tilde{t}_{1}(\tilde{t})\tilde{t}_{1}, \tilde{t}) \\ & \tilde{t}_{1}, \tilde{t}_{1}(\tilde{t})\tilde{t}, \tilde{t}) \\ & \tilde{t}_{1}, \tilde{t}, \tilde{t}, \tilde{t}, \tilde{t}, \tilde{t}) \\ & \tilde{t}_{1}, \tilde{t}, $	$\begin{array}{c} 0 \\ 2 \ e, \mu \ (SS) \\ 1 \cdot 2 \ e, \mu \\ 2 \ e, \mu \\ 2 \ e, \mu \\ 0 \\ 1 \ e, \mu \\ 0 \\ 0 \\ 1 \ e, \mu \\ 0 \\ 3 \ e, \mu \ (Z) \end{array}$	2 b 0-3 b 1-2 b 0-2 jets 2 jets 2 b 1 b 2 b nono-jet/c-ta 1 b 1 b	Yes Yes Yes Yes Yes Yes Yes Yes Yes	20.1 20.7 4.7 20.3 20.3 20.1 20.7 20.5 20.3 20.7 20.7	5. 105-82 GeV m(1), 1,150 μ/ m(1), 2,40 () 5. 470 GeV m(1), 2,40 () 5. 225 GeV m(1), 2,40 () 6. 225 GeV m(1), 2,40 () 6. 105-000 GeV m(1), 2,40 () 6. 105-000 GeV m(1), 2,40 () 7. 205 GeV m(1), 2,40 () 7. 205 GeV m(1), 4,40 ()	ATLAS-CONF-2015-053 ATLAS-CONF-2015-007 1208-4305, 1209-2102 ATLAS-CONF-2015-048 ATLAS-CONF-2015-048 ATLAS-CONF-2015-025 ATLAS-CONF-2015-024 ATLAS-CONF-2015-025 ATLAS-CONF-2015-025 ATLAS-CONF-2015-025
3 rd gen.	$\begin{array}{c} \vec{g} \rightarrow \vec{b} \vec{b} \vec{f}_{1}^{0} \\ \vec{g} \rightarrow \vec{c} \vec{x}_{1}^{0} \\ \vec{g} \rightarrow \vec{c} \vec{x}_{1}^{0} \\ \vec{g} \rightarrow \vec{c} \vec{x}_{1}^{0} \\ \vec{g} \rightarrow \vec{b} \vec{c} \vec{x}_{1}^{1} \end{array}$	0 0 0-1 e, µ 0-1 e, µ	3 b 7-10 jets 3 b 3 b	Yes Yes Yes Yes	20.1 20.3 20.1 20.1	8 1.2 TeV m(2) coo GaV 8 1.14 TeV m(2) coo GaV 8 1.34 TeV m(2) coo GaV 8 1.3 TeV m(2) coo GaV	ATLAS-CONF-2013-061 ATLAS-CONF-2013-054 ATLAS-CONF-2013-061 ATLAS-CONF-2013-061
Inclusive Searches	MEUGRACMESM MEUGRACMESM MEUGRACMESM 48, 2→0 ² 1,0 28, 2→0 ² 1,0 28, 2→00 ² 1,0 20, 20, 20, 20, 20, 20, 20, 20, 20, 20,	$\begin{array}{c} 0 \\ 1 \ e, \mu \\ 0 \\ 0 \\ 1 \ e, \mu (SS) \\ 2 \ e, \mu (SS) \\ 2 \ e, \mu (SS) \\ 1 \ e, \mu + \gamma \\ 2 \ \gamma \\ 1 \ e, \mu + \gamma \\ \gamma \\ 2 \ e, \mu (Z) \\ 0 \end{array}$	2-6 jets 3-6 jets 2-6 jets 2-6 jets 2-6 jets 3-6 jets 3-6 jets 3-1 jets 0-2 jets 0 1 b 0-3 jets mono-jet		20.3 20.3 20.3 20.3 20.3 20.7 4.7 4.8 4.8 4.8 5.8 10.5	54 13760 00-02 54 23760 00-02 54 2000 00-02 55 0000 00-02 55 0000 00-02 55 0000 00-02 55 0000 00-02 55 0000 00-02 56 00000 00-02 56 0000 00-02 56 00000000000000000000	ATLAS-CONF-2015-047 ATLAS-CONF-2015-042 ATLAS-CONF-2015-045 ATLAS-CONF-2015-047 ATLAS-CONF-2015-047 ATLAS-CONF-2015-026 ATLAS-CONF-2015-026 12024.0733 ATLAS-CONF-2012-144 1211.1107 ATLAS-CONF-2012-147
_				т.	J		

Mass limit

*Only a selection of the available mass limits on new states or phenomena is shown. All limits quoted are observed minus 1 r theoretical signal cross section uncertainty.

Stop and sbottom search

Natural SUSY

 Natural Supersymmetry: superparticles responsible for cancellation of quadratic divergence in Higgs mass are the third generation squarks, can be comparatively light to cure the fine-tuning problem of SM.

$$\begin{split} m_h^2 &= m_Z^2 \cos^2 2\beta + \frac{3}{4\pi^2} \frac{m_t^4}{v^2} \left(log \frac{M_S^2}{m_t^2} + \frac{X_t^2}{M_S^2} (1 - \frac{X_t^2}{12M_S^2}) \right) \\ M_S^2 &= m_{\tilde{t}_1} m_{\tilde{t}_2} \\ X_t &= A_t - \mu \cot \beta \end{split}$$

- Lighter stop/sbottom : large stop/sbottom tri-linear couplings.
- $m_h \sim 125$ GeV for maximal L R mixing $X_t = \sqrt{6}M_S$

[talk by Carlos Wagner, SUSY 2013]

Dilip Kumar Ghosh (IACS)

• Light third generation scenario has an extremely attractive prospect for both the theorists and the experimentalists

Di-stop production resulting in $b\bar{b}W^+W^- + E_T$ in two possible intermediate steps:

Stop search @LHC

Stop search @LHC

[see also talk by J. Boyd in susy 2013]

Dilip Kumar Ghosh (IACS)

Our Strategy

- Most phenomenological studies assume predominantly right handed stops/sbottom decaying as $\tilde{t} \to t \tilde{\chi}_1^0$ and $\tilde{b}_1 \to b \tilde{\chi}_1^0$
- Decay of top and bottom squarks to the heavier neutralinos and charginos are quite motivated in natural SUSY spectrum.
- Easy to achieve with lighter stops/sbottoms predominantly left handed.
- We start with Stop and Sbottom pair production having a multi-leptonic final state.

Typical Process:

The Signature

- A hadronically decaying top quark, two additional hard leptons and missing transverse momentum (for both stop and sbottom).
- Relatively heavy stop/sbottom, large mass gap $b_1 \tilde{\chi}_1^{\pm}$ and $\tilde{t}_1 \tilde{\chi}_2^0$, sufficiently energetic top quark, apply Jet substructure.
- Two hard leptons with moderately large missing transverse energy, a clean signal.
- A hard cut on M_{T2}: constructed using the momenta of two hard leptons and missing transverse energy, helps to combat the background.

NOTE:

ATLAS and CMS searched for electroweak gauginos,

 $pp \rightarrow \widetilde{\chi}_1^{\pm} \widetilde{\chi}_2^0 \rightarrow W \widetilde{\chi}_1^0 Z \widetilde{\chi}_1^0$, ruled out a range $\widetilde{\chi}_1^{\pm} = \widetilde{\chi}_2^0$ masses as a function of the LSP mass.

Second neutralino is always assumed to decay exclusively to the LSP and Z boson, limits will not apply directly when second neutralino has non zero branching ratio to the Higgs boson.

Dilip Kumar Ghosh (IACS)

Stop and sbottom search

Choice of model parameters

- We vary the left handed third generation mass parameter $m_{\widetilde{Q_3}}$ keeping $m_{\widetilde{t}_R} = m_{\widetilde{b}_R} = 2$ TeV.
- ② M_3 = 1.5 TeV while M_1 and M_2 are varied providing various values of $\widetilde{\chi}^0_i$ and $\widetilde{\chi}^\pm_i$
- Iggsino mass parameter μ = 300 GeV and tan β is fixed at 10.
- $A_t = -2800 \text{ GeV}$, keeping other Trilinear coupling set to zero.
- $on m_{\widetilde{Q}_i} = m_{\widetilde{\ell}} = 5 \text{ TeV}.$
- To generate the particle spectrum we use SuSpect, while decay/branching ratios are calculated using SUSYHIT.

Benchmark Points

	P1	P2	P3	P4	P5	P6
$m_{\widetilde{Q_3}}$	500	500	700	700	900	900
$m_{\tilde{t}_1}$	501.7	501.7	714.2	714.2	918.1	918.1
$m_{\widetilde{b}_1}$	525.4	525.4	748.4	748.4	918.1	918.1
$m_{\widetilde{\chi}^0_2}$	193.3	193.9	245.9	244.3	297.9	298.6
$m_{\widetilde{\chi}_1^{\pm}}$	192.8	192.8	242.7	242.7	297.0	297.0
$BR(\widetilde{b}_1 \rightarrow b \widetilde{\chi}^0_{2,3,4})(\%)$	34.6	34.5	19.3	19.4	19.4	19.4
$BR(\widetilde{b}_1 \rightarrow t \widetilde{\chi}^{\pm}_{1,2})(\%)$	65.4	65.5	80.7	80.6	80.6	80.6
$BR(\tilde{t}_1 \rightarrow t \tilde{\chi}^0_{2,3,4})(\%)$	34.9	35.2	62.5	62.4	62.5	62.5
$BR(\tilde{t}_1 \rightarrow b \tilde{\chi}^{\pm}_{1,2})(\%)$	65.1	64.8	37.5	37.6	37.5	37.5
${ m BR}({\widetilde \chi}^0_2 o {\widetilde \chi}^0_1 { m Z})(\%)$	33.9	100.0	100.0	22.1	12.8	100.0
${ m BR}({\widetilde \chi}^0_2 o {\widetilde \chi}^0_1 { m h})(\%)$	66.1	0.0	0.0	77.9	87.2	0.0

NOTE: Two scenarios:: Second lightest neutralino dominantly decays via Z boson (benchmarks P2, P3, P6) and/or it decays

dominantly via the Higgs (benchmarks P1, P4, P5).

Dilip Kumar Ghosh (IACS)

- Signal: Two hard leptons associated with atleast a top quark, and missing transverse momentum.
- SM backgrounds: $t\bar{t} + n$ jets, $t\bar{t}Z$, $t\bar{t}W$, tbW, $t\bar{t}t\bar{t}$, $t\bar{t}WW$.
- We also check, *tW* and *tZ* events, do not contribute to the background.

Selection Cuts I

- C1: At least two isolated leptons (electron and muon) with the transverse momentum $p_T^{\ell} \ge 25$ GeV and the pseudo-rapidity $|\eta| \le 3$.
- C2: Impose $M_{T2} > 125 \text{ GeV}$

$$M_{T2}(\overrightarrow{p}_{T}^{\ell_{1}}, \overrightarrow{p}_{T}^{\ell_{2}}, \overrightarrow{p}_{T}) = \min_{\overrightarrow{p}_{T} = \overrightarrow{p}_{T}^{1} + \overrightarrow{p}_{T}^{2}} \left[\max\{M_{T}(\overrightarrow{p}_{T}^{\ell_{1}}, \overrightarrow{p}_{T}^{1}), M_{T}(\overrightarrow{p}_{T}^{\ell_{2}}, \overrightarrow{p}_{T}^{2})\} \right]$$

where ℓ_1 and ℓ_2 are the two hard leptons and $M_T(\overrightarrow{v}_1,\overrightarrow{v}_2)$ is the transverse mass of the $(\overrightarrow{v}_1,\overrightarrow{v}_2)$ system which is defined as

$$M_{\mathrm{T}}(\overrightarrow{\mathrm{v}}_{1},\overrightarrow{\mathrm{v}}_{2})=\sqrt{2|\overrightarrow{\mathrm{v}}_{1}||\overrightarrow{\mathrm{v}}_{2}|(1-\cos\phi)},$$

 ϕ being the (azimuthal) angle between \overrightarrow{v}_1 and \overrightarrow{v}_2 while \overrightarrow{p}_T^1 and \overrightarrow{p}_T^2 are a hypothetical split of the total observed missing transverse momentum into two parts.

Dilip Kumar Ghosh (IACS)

Selection Cuts II

• C3: Define $m_{eff} = \Sigma p_T^l + \Sigma p_T^\ell$, where the first sum runs over all the hard jets and the second sum is over all the hard and isolated leptons present in an event. We choose $m_{eff} > 800$ GeV.

- C4: Our signal final state consists of a number of stable neutralinos and neutrinos, a moderately hard missing transverse momentum cut $p_T > 150$ GeV.
- C5: At least one top quark reconstructing its invariant mass using the jet substructure technique. (Johns Hopkins top tagger with the choice of the parameters R = 1.5, $\delta_p = 0.10$ and $\delta_r = 0.19$)

Signal & Background events

			No. of events after the cut					
Signal	Production	Simulated events	C1	C2	C3	C4	C5	$\sigma_{\rm S} \times 10^2$ (fb)
	Cross-section (fb)	(in units of 10 ⁴)						
P1	1130	10	10573	821	339	267	55	62.2
P2	1130	10	11091	657	248	205	55	62.2
P3	135	5	8043	1132	712	645	153	41.3
P4	27	5	7713	1207	749	663	153	41.3
P5	27	5	8623	1720	1414	1322	295	15.9
P6	27	5	8543	1679	1343	1281	322	17.4

		No. of events after the cut						
SM backgrounds Production		Simulated events	C1	C2	C3	C4	C5	$\sigma_{\rm B} \times 10^2$ (fb)
	Cross-section (fb)	(in units of 10 ⁴)						
$t\bar{t}$ + jets	918000	4320	1587596	601	39	29	4	8.5
tbW	61000	600	215807	80	4	2	1	1.0
tīZ	t tZ 1121		6255	253	52	20	2	3.2
tŦ₩	769	5	4471	31	3	2	1	1.5
$t \overline{t} W^+ W^-$	10	1	1588	33	14	13	6	0.6
tītī	10	1	1781	31	14	10	4	0.4
Total								
Background								15.2

Results

		Signal(1	N_{S}) (Backgro	ound(N _B))	Significance(S) for $\kappa = 10\%$ (30%, 50%)				
	m _{it1} (GeV)	10 fb ⁻¹	50 fb ⁻¹	100 fb ⁻¹	10 fb ⁻¹	50 fb ⁻¹	$100 {\rm fb}^{-1}$		
P1	501.6	6.2(1.6)	31.1(8)	62.2(16)	4.9(4.6, 4.1)	10.8(8.4, 6.3)	14.4(9.9, 6.9)		
P2	501.6	6.2(1.6)	31.1(8)	62.2(16)	4.9(4.6, 4.1)	10.8(8.4, 6.3)	14.4(9.9, 6.9)		
P3	714.2	4.1(1.6)	20.7(8)	41.3(16)	3.2(3.0, 2.7)	7.0(5.6, 4.2)	9.6(6.6, 4.6)		
P4	714.2	4.1(1.6)	20.7(8)	41.3(16)	3.2(3.0, 2.7)	7.0(5.6, 4.2)	9.6(6.6, 4.6)		
P5	918.1	1.6(1.6)	7.9(8)	15.9(16)	1.3(1.2, 1.1)	2.7(2.1, 1.6)	3.7(2.5, 1.8)		
P6	918.1	1.7(1.6)	8.7(8)	17.4(16)	1.3(1.2, 1.1)	2.9(2.3, 1.8)	4.0(2.8, 1.9)		

 To take into account the theoretical uncertainty in the estimation of different SM backgrounds, jet energy measurement etc. we calculate significance in the following way :

• Signal significance :
$$\mathcal{S} = \frac{N_S}{\sqrt{N_B + (\kappa N_B)^2}}$$

Conclusions

- A Standard Model like Higgs boson of mass $m_h \simeq 125$ GeV has been discovered at the LHC .
- Current Higgs data ⇒ light 3rd Generation SUSY particles
- stop and sbottom have been probed up to 650 GeV depending on the decay.
- 14 TeV LHC run will have a rich program to discover the stop and sbottom.
- Signal studied : A top quark with two hard leptons along with substantial missing energy.
- Method used : *M*_{T2}, *m*_{eff} and jet substructure technique to hadronically decaying top quark.
- Outcome : the third generation squarks with masses ~ 900 GeV can be probed at the 14 TeV LHC with a 100 fb⁻¹ data set.

Thank You!

Backup Slides

Jets: Footprints of Partons

Jets can serve two purposes:

They can be **observables**, that one can calculate and measure in an experiment.

They can be **Tools** that one can employ to extract specific properties of the final state.

Dilip Kumar Ghosh (IACS)

Stop and sbottom search

Construction of Jets

• The Construction of Jets is ambiguous.

Why?

- 1. Which particles get together into a common Jet?
- \Rightarrow There is NO Unique way to group hadrons.

⇒ JET Algorithm

- 2. How to combine the particles?
- ⇒ Recombination Scheme
- Most Commonly used: <u>Direct 4-Vector sum</u> (E Scheme)

Jet Algorithm + Recombination Scheme = Jet Definition

- Jets Algorithms are broadly of two classes:
 - Cone Algorithms :
 - Sequential Recombination Algorithms

Jet AlgorithmsContd

Sequential Recombination Algorithms

Sequential Recombination Algorithm repeatedly combine closest pair of particles into a single one, according to some distance measurement.

The most general form:

$$d_{ij} = \min(p_{T_i}^{2a}, p_{T_i}^{2a}) \Delta R_{ij}^2 / R^2$$

- $\mathbf{a} = 1$: k_t algorithm
- **a** = 0: Cambridge/Aachen algorithm
- $\mathbf{a} = -1$: Anti- k_t algorithm
- y : Pseudo-rapidity.
- Φ : Azimuthal angle

R : Sets the minimal interjet separation in the y- ϕ plane

Sequential algorithm

Start with list of particles

- Calculate distance between all pairs of particles using d_{ij} and the beam distance for each particles using d_{iB}
- Solution Find the minimum distance in the set $\{d_{iB}, d_{ij}\}$
- If the minimum is d_{ij} , recombine *i* and *j* into a single new particle $(p_k = p_i + p_j)$ and return to step 1
- Otherwise, if the minimum is d_{iB} declare *i* to a jet and remove it from the list of particles
- Stop when no particles remain

• Arbitrarily soft particles can form jets $\implies p_{T_{min}}^{jets}$ for hard physics

- *d_{ij}* determines the order in which particles are merged in the jet with recombinations that minimizes *d_{ij}* first
- *k_t* algorithm tends to merge low-*p_T* particles earlier
- CA merges pairs in strict angular order
- Anti-k_t tends to cluster particles with hard p_T earlier producing jet with less interesting substructure

No Boost vs Boost

 $H \rightarrow b\bar{b}$ at rest \implies Two back to back jets

 $m_H = 120 \text{ GeV}, p_T \gtrsim 200 - 300$ $\text{GeV} \Longrightarrow \text{ large boost} \Longrightarrow$ $\Delta R \approx 2m_H/p_T \approx 1.2 - 0.8$ $\Delta R = \sqrt{(\Delta \eta)^2 + (\Delta \phi)^2}$

G. Kribs talk @ Fermilab (2011)

Dilip Kumar Ghosh (IACS)

Stop and sbottom search

SUSY2013 29/08/2013 31/43

Fat jets

- Quantitatively, consider the following thumb rule for a two-body decay: To resolve the two partons of a X → q q̄ decay,choose a radius (or more generally a jet size) of R < 2M_X /P_T
- For $P_T \gg M_h R \rightarrow$ very small (Overlap of Jet areas !)
- These highly boosted jets are called "Fat Jets"
- Example: Consider a hadronically decaying W Boson..

Question : How do I see the inside of this fat jet ?

Stop and sbottom search

Jet Substructure

The basis of this technique involves an iterative jet clustering algorithm (e.g C/A), examining subjet kinematics step-by-step, and finally choosing the "best" subjets to form the fat-jet mass.

**Ref: Phys. Rev. Lett. 100.242001, Butterworth, Davison, Rubin & Salam

Jet Decomposition 1

Step 1: Break the jet j into two subjets(j_1, j_2) by undoing its last stage of clustering s.t $m_{j_1} > m_{j_2}$.

Step 2: a) Significant mass drop (MD),

 $m_{j_1} < \mu m_j$

b) Splitting is nearly Symmetric

 $\mathbf{y} = [min(P_{T_{j_1}}^2, P_{T_{j_2}}^2)/m_j^2] \Delta R_{j_1,j_2}^2 > y_{cut}$

 Two parameters μ and y_{cut} are independent of Higgs mass and Higgs p_t.

• $\mu = 0.667$ $y_{cut} = (0.3)^2$

 \Rightarrow Helps to reject/minimize QCD contamination.

Step 3: If $y > y_{cut}$, consider j as heavy particle neighborhood and exit the loop.

Otherwise

Redefine j to be j_1 and go back to Step 1.

In practice, above procedure is not optimal for LHC, when the transverse momentum can be around 250-300 GeV. Since,

 $m_x \sim 150 \text{ GeV} \implies R_{j_1,j_2} \sim 1.0 \rightarrow \text{Large}$

 \Rightarrow Significant degradation due the Underlying Events (UE)

ightarrow UE $\propto R_{j_1,j_2}^4$

Filtering

- To minimize UE contamination \Rightarrow Filter the subjets j_1, j_2 within a finer angular region, $R_{filt} < R_{j_1, j_2}$
- Consider 3 hardest p_T subjets 2b & gluon
- Most Effective result (In the context of Higgs search) \Rightarrow $R_{filt} = min(R_{j_1,j_2}/2, 0.3)$
- (provided, both the subjets have tagged b's)

Application : $pp \rightarrow VH$, $(V = W^{\pm}, Z)$

- $pp \rightarrow VH$, with $V = W^{\pm}, Z \Longrightarrow$
- $\ell \nu b \bar{b}, \, \ell \ell b \bar{b}, \, \nu \bar{\nu} b \bar{b}$ final state
- For Higgs to be boosted *p*_T(*H*) > 200 GeV
- Such a high $p_T(H) \Longrightarrow \sigma_{\text{boosted}}(WH/ZH) \sim 5\% \text{ of } \sigma_{\text{tot}}(WH/ZH)$ @ 14 TeV
- ATLAS simulation @14 TeV with 30fb^{-1} luminosity : $N_S(m_H \sim 120 \text{ GeV}) \sim 13.5 \text{ and}$ $N_B \sim 20.3 \Longrightarrow \frac{S}{\sqrt{B}} = 3$

[J.Buttherworth etal., PRL (2008)], ATL-PHYS-PUB-2009-088, G. Kribs talk @ Fermilab (2011)

- Particles are clustered into jets of size *R* using CA algorithm.
- Each fat jet in the event (for *t*t̄ this would be one of the two hardest two) is declustered, to look into subjets.
- Done by reversing each step in the CA clustering, iteratively separating each jet into two objects.
- Demand $p_T(i)/p_T(J) > \delta_p$, else throw away softer jet.
- Continue declustering until one of four things happens:
- Both objects are harder than δ_p .
- 2 Both objects are softer than δ_p .
- the two objects are too close, | Δη | + | Δφ |< δ_r, where δ_r is an additional parameter.
- or there is only one calorimeter cell left.

D.E. Kaplan etal. PRL 101, 142001 (2008)

Dilip Kumar Ghosh (IACS)

D.E. Kaplan etal. PRL 101, 142001 (2008)

- In case of (1), the two hard objects are considered subjets.
- In cases (2), (3), and (4), the original jet is considered irreducible.
- If an original jet declusters into two subjets, the previous step is repeated on those subjets ⇒ 2,3,or 4 subjets of the original jet.
- The cases with 3 or 4 subjets are kept, the 4th representing an additional soft gluon emission, while the 2 subjets are rejected.
- Demand : $M_{3j/4j} \simeq m_t$.
- Demand : $M_{2j} \simeq m_W$.
- Finally we demand that the W helicity angle satisfy $\cos \theta_h < 0.7$.
- For top jets, the distribution is flat, *W* decays on-shell, its decay products are isotropically distributed in the *W*-rest frame.
- The light quark/ gluon jets distribution diverges as $1/(1 \cos \theta_h)$.

D.E. Kaplan etal. PRL 101, 142001 (2008)