

Search for Electroweak Production of Gauginos and Sleptons at CMS **Ben Hooberman**, for the CMS Collaboration

SUS Code	Title	Data Sample	
SUS-13-006	Search for electroweak production of charginos, neutralinos, and sleptons using leptonic final states in pp collisions at 8 TeV	19.5 fb ⁻¹ 8 TeV	NEW
SUS-13-017	Search for electroweak production of charginos and neutralinos in final states with a Higgs boson in pp collisions at 8 TeV	19.5 fb ⁻¹ 8 TeV	BRAND

All results available via CMS SUSY summary twiki: https://twiki.cern.ch/twiki/bin/view/CMSPublic/PhysicsResultsSUS

- Introduction & Motivation
- SUS-13-006: Searches in Leptonic Final States
- SUS-13-017: Searches with Higgs Bosons

Intro/Motivation

Intro/Motivation

• "Strong SUSY" \rightarrow large σ , jets, E_T^{miss} , (leptons)

August 29th, 2013

SUSY 2013

Intro/Motivation

• "Electroweak SUSY" \rightarrow small σ , lepton(s) + E_T^{miss}

SUSY 2013

- Introduction & Motivation
- SUS-13-006: Searches in Leptonic Final States
- SUS-13-017: Searches with Higgs Bosons

$\chi^{\pm}\chi^0$ with light sleptons

- Broad array of searches targeting variety of final states
- Analyses are exclusive \rightarrow combined to improve sensitivity

32: Overview

32: Results

- Lepton flavor categories:
 - 3l, OSSF pair (shown)
 - 3l, no OSSF pair
 - SS 2l + τ_{had}

backup

- OS e μ + τ_{had}
- Data consistent with bkg
 over range of kinematical
 regions, lepton categories

August 29th, 2013

SUSY 2013

SS 22 channel

August 29th, 2013

SUSY 2013

Z(ll)V(jj) Channel

Event Selection

- Z→ee/µµ candidate
- ≥ 2 jets with $M_{jj} \sim M_W/M_Z$
- b-veto → suppress tt
- Dominant backgrounds
 - Z+jets: model fake E_T^{miss} with y+jets data control sample
 - tt: from eµ data control sample

Results

 Data well-described over ~4 orders of magnitude → no excesses

Results based on Z(LL)W(jj) and 3L searches
 Complementarity: improvement from combined

- Complementarity: improvement from combination

42 Channel

$E_{\rm T}^{\rm miss}$ (GeV)	Observed	Total Bkg
1 OSSF, 0 τ		
0-30	1	2.3 ± 0.6
30 - 50	3	1.2 ± 0.3
50 - 100	2	1.5 ± 0.4
> 100	2	0.8 ± 0.3
1 OSSF, 1 τ		
0-30	33	25 ± 12
30 - 50	11	11 ± 3.1
50 - 100	9	9.3 ± 1.9
> 100	2	2.9 ± 0.6
2 OSSF, 0 τ		
0-30	142	149 ± 46
30 - 50	25	28 ± 11
50 - 100	4	4.5 ± 2.7
> 100	1	0.8 ± 0.3

Event Selection

- 4ℓ, up to 1 au_{had}
- Classify events by #OSSF pairs, 0 vs. 1 τ_{had} , E_T^{miss}

Dominant backgrounds:

 ZZ: from MC, with data-driven MET corrections

Results

- Data agrees with SM background

GMSB higgsino ZZ+E_T^{miss} Interpretation

- Results based on Z(LL)V(jj), 3L+4L, and combination
 - Combine complementary channels \rightarrow <u>exclude μ 110-330 GeV</u>
- Probe μ in interesting range for Higgs naturalness

OS dilepton channel

Event Selection

- 2 high p_T OS e/µ leptons with Z-veto
- b-veto, moderate MET

Strategy

- Search for excess at high " M_{CT+} ": $M_{CT\perp} < M_W$ for WW \rightarrow 202v processes
- Fit M_{CT+} with templates extracted from data control samples and MC

Results

Observed $M_{CT\perp}$ agrees with prediction

Chargino-Pairs and Slepton-Pairs

August 29th, 2013

SUSY 2013

- Introduction & Motivation
- SUS-13-006: Searches in Leptonic Final States
- SUS-13-017: Searches with Higgs Bosons

- New / unexplored final state: WH+E_T^{miss}
- Novel effort: "Higgs-tagging" in SUSY searches

$\chi^{\pm}\chi^{0} \rightarrow WH + E_{T}^{miss}$ Signatures

$\chi^{\pm}\chi^{0} \rightarrow WH + E_{T}^{miss}$ Signatures

$\chi^{\pm}\chi^{0} \rightarrow W(\ell v)H(bb)+E_{T}^{miss}$

Event selection

- Exactly 1 high $p_T e/\mu$
- Exactly 2 jets, both b-tagged
- Moderate E_T^{miss}

<u>Strategy</u>

- Suppress SM backgrounds with E_T^{miss} and related quantities
- Background from MC, corrections & uncertainties from data
- Search for peak in M_{bb}

<u>Results</u>

- No evidence for a peak in M_{bb}
- Data agrees with bkg in signal region

$\chi^{\pm}\chi^{0} \rightarrow W(\ell v)H(WW)+E_{T}^{miss}$ with SS 2 ℓ

Event selection

- Exactly 2 SS e/µ leptons
- 2 or 3 jets, b-veto
- Moderate E_T^{miss}

<u>Strategy</u>

- Suppress SM backgrounds with E_T^{miss} and related quantities
- Data-driven fake lepton estimate, prompt SS 2^l bkg from MC
- Search for bump in $M_{\ell jj} \sim M_H$

<u>Results</u>

- No evidence for a bump in $M_{\varrho_{jj}}$
- Good agreement in signal region

SUSY 2013

reinterpretation of SUS-13-002: inclusive multileptons (see talk: A. Gozzelino)

 $\chi^{\pm}\chi^{0} \rightarrow WH + E_{T}^{miss}$ with Multileptons

- Event selection
 - − ≥3 leptons, ≤1 τ_{had}
 - Classify events based on number/flavor of leptons, #b-jets, E_T^{miss}, H_T

<u>Strategy</u>

- Extract limits from signal regions with exactly 3 ℓ , 0 b-jets, low H_T

WH+E_T^{miss} Interpretation

- 12 best at large m_{χ} , SS 22 and \geq 32 contribute at low m_{χ} (backup)
- Combine 3 channels \rightarrow probe up to $m_{\chi} \sim 204 \text{ GeV}$
- Large improvement in 14 TeV data expected (see talk F. Golf)

 $\tilde{\chi}_2^0 \rightarrow \tilde{\chi}_1^0 + \mathbb{Z} / \mathbb{H}$

August 29th, 2013

SUSY 2013

Conclusions

SUS-13-017: decays to Higgs SUS-13-006: leptonic final states

 Probe gauginos up to m_χ ~ 200 GeV

- Probe gauginos up to $m_{\chi} \sim 300-740 \text{ GeV}$
- Probe sleptons up to $m_{\chi}^{2} \sim 280 \text{ GeV}$

Additional Material

CMS SUSY Results

August 29th, 2013

SUSY 2013

August 29th, 2013

SUSY 2013

$\chi^{\pm}\chi^{0} \rightarrow 3\tau$ Interpretation

- Assume light right-handed sleptons leading to 3τ signature
 - χ^+ couples to ℓ_R through higgsino component: $\chi^{\pm} \rightarrow \tau v$
 - For high tan β, χ⁰ couples to ℓ_R through higgsino component: $\chi^0 → \tau \tau$
- Results from 3 ℓ analysis probe m_x up to ~340 GeV

$\chi^{\pm}\chi^{0} \rightarrow 2\ell + \tau$ Interpretation

- Assume light right-handed sleptons leading to $2l+\tau$ signature
 - χ^+ couples to ℓ_R through higgsino component: $\chi^{\pm} \rightarrow \tau v$
 - For low tan β, χ⁰ couples to ℓ_R through bino component: $\chi^0 → ℓℓ$

• Results from 3l analysis probe m_{χ} up to ~640 GeV

$\chi^{\pm}\chi^{0} \rightarrow 3\ell$ Interpretation

- Assume light left-handed sleptons/sneutrinos: **3***ℓ* **signature**
 - Both $\chi^{\scriptscriptstyle +}$ and $\chi^{\scriptscriptstyle 0}$ couple equally to e, $\mu,\,\tau$
 - 50% branching fraction penalty for $\tilde{\chi}_2^0 \rightarrow \tilde{\nu} \nu \rightarrow \tilde{\chi}_1^0 \nu \nu$

• Results from 3^l analysis probe m_{χ} up to ~740 GeV</sup>

- ~2σ deviation between 3ℓ observed vs. expected
- Good agreement in Z(ll)V(jj) channel

Preselection

exactly 12, 2 jets (both b-tagged), $E_T^{miss} > 50 \text{ GeV}$

Signal region with M_{bb} mass window requirement inverted

- The M_{bb} shape is well-reproduced in preselection region
- Good agreement in signal region outside the $\rm M_{\rm bb}$ mass window

$\chi^{\pm}\chi^{0} \rightarrow W(\ell v)H(bb)+E_{T}^{miss}$

Preselection: exactly 1 ℓ , 2 jets (both b-tagged), $E_T^{miss} > 50 \text{ GeV}$

August 29th, 2013

SUSY 2013

축

Sample	$E_{\rm T}^{\rm miss} > 100 {\rm GeV}$	$E_{\rm T}^{\rm miss} > 125 { m GeV}$	$E_{\rm T}^{\rm miss} > 150 { m GeV}$	$E_{\rm T}^{\rm miss} > 175 {\rm GeV}$
Dilepton top	2.8 ± 1.2	2.3 ± 1.0	1.7 ± 0.7	1.2 ± 0.5
Single lepton top	1.8 ± 1.1	0.9 ± 0.6	0.5 ± 0.3	0.2 ± 0.2
$WZ ightarrow \ell u b \overline{b}$	0.6 ± 0.2	0.4 ± 0.2	0.3 ± 0.1	0.3 ± 0.1
$W + b\overline{b}$	1.5 ± 0.9	1.0 ± 0.7	0.9 ± 0.6	0.2 ± 0.3
W+light jets	0.5 ± 0.2	0.3 ± 0.1	0.2 ± 0.1	0.2 ± 0.1
Rare	0.4 ± 0.2	0.3 ± 0.2	0.3 ± 0.2	0.2 ± 0.1
Total SM	7.7 ± 1.9	5.4 ± 1.3	3.8 ± 1.0	2.3 ± 0.6
Data	7	6	3	3
$\tilde{\chi}_{1}^{\pm}\tilde{\chi}_{2}^{0} \to (W\tilde{\chi}_{1}^{0})(H\tilde{\chi}_{1}^{0})$ (130/1)	9.0 ± 1.2	7.5 ± 1.0	6.0 ± 0.8	4.5 ± 0.6
$\tilde{\chi}_{1}^{\pm} \tilde{\chi}_{2}^{0} \to (W \tilde{\chi}_{1}^{0}) (H \tilde{\chi}_{1}^{0}) (150/1)$	7.3 ± 1.0	6.2 ± 0.9	5.0 ± 0.7	3.6 ± 0.5
$\tilde{\chi}_{1}^{\pm} \tilde{\chi}_{2}^{0} \to (W \tilde{\chi}_{1}^{0}) (H \tilde{\chi}_{1}^{0}) (200/1)$	7.3 ± 1.0	6.0 ± 0.8	4.9 ± 0.7	3.6 ± 0.5
$\tilde{\chi}_{1}^{\pm} \tilde{\chi}_{2}^{0} \to (W \tilde{\chi}_{1}^{0}) (H \tilde{\chi}_{1}^{0}) (300/1)$	5.5 ± 0.7	5.2 ± 0.7	4.6 ± 0.6	4.1 ± 0.6
$\underline{\tilde{\chi}_{1}^{\pm}\tilde{\chi}_{2}^{0}} \to (W\tilde{\chi}_{1}^{0})(H\tilde{\chi}_{1}^{0}) (400/1)$	3.4 ± 0.4	3.3 ± 0.4	3.0 ± 0.4	2.7 ± 0.4

- Sliding E_T^{miss} cut: >100, 125, 150, 175 GeV
- Good agreement in all regions

August 29th, 2013

SS 22 Results

Sample	ee	μμ	еµ	Total
Fakes	0.3 ± 0.3	0.2 ± 0.2	0.8 ± 0.5	1.3 ± 0.8
Charge Flips	< 0.01	< 0.01	< 0.03	< 0.03
Genuine SM SS	0.4 ± 0.4	0.4 ± 0.4	0.8 ± 0.6	1.6 ± 0.9
Total SM	0.7 ± 0.5	0.6 ± 0.5	1.6 ± 0.7	2.9 ± 1.2
Data	1	1	1	3
$\tilde{\chi}_{1}^{\pm}\tilde{\chi}_{2}^{0} \rightarrow (W\tilde{\chi}_{1}^{0})(H\tilde{\chi}_{1}^{0})$ (130/1)	$0.8{\pm}0.1$	$1.0 {\pm} 0.1$	1.9 ± 0.3	$3.6{\pm}0.5$
$\tilde{\chi}_{1}^{\pm} \tilde{\chi}_{2}^{\bar{0}} \to (W \tilde{\chi}_{1}^{\bar{0}}) (H \tilde{\chi}_{1}^{\bar{0}}) (150/1)$	$0.5 {\pm} 0.1$	$0.6 {\pm} 0.1$	$1.4{\pm}0.2$	$2.5 {\pm} 0.3$
$\tilde{\chi}_{1}^{\pm} \tilde{\chi}_{2}^{\bar{0}} \to (W \tilde{\chi}_{1}^{\bar{0}}) (H \tilde{\chi}_{1}^{\bar{0}}) (200/1)$	$0.20 {\pm} 0.03$	$0.4{\pm}0.1$	$0.6 {\pm} 0.1$	1.2 ± 0.2
$\tilde{\chi}_{1}^{\pm} \tilde{\chi}_{2}^{\bar{0}} \to (W \tilde{\chi}_{1}^{\bar{0}}) (H \tilde{\chi}_{1}^{\bar{0}}) (300/1)$	$0.07 {\pm} 0.01$	$0.12 {\pm} 0.02$	$0.19 {\pm} 0.03$	$0.4{\pm}0.1$
$\tilde{\chi}_{1}^{\pm} \tilde{\chi}_{2}^{\bar{0}} \to (W \tilde{\chi}_{1}^{\bar{0}}) (H \tilde{\chi}_{1}^{\bar{0}}) (400/1)$	$0.02{\pm}0.00$	$0.03 {\pm} 0.00$	$0.06 {\pm} 0.01$	$0.11 {\pm} 0.02$

Interpretation

 $\tilde{\chi}_1^0$

 $\tilde{\chi}_1^0$

 [1] Ch. 8 of Martin's SUSY primer <u>http://arxiv.org/abs/hepph/9709356</u> and references therein

WH+E_T^{miss} Individual Limits

SUSY 2013

Neutralino Decays to Z vs. h

Gori, Schwaller, Wagner arXiv:1103.4138

