

ARC Centre of Excellence for Particle Physics at the Terascale Searches for direct pair production of third generation squarks with the ATLAS detector

Paul Jackson University of Adelaide

presented on behalf of the ATLAS Collaboration at SUSY13, ICTP, Trieste, Italy

SUperSYmmetry

SUSY (more than) duplicates spectrum of particle states wrt. Standard Model

Sparticle decays produce SM objects: (**b**/**c**-)jets, leptons, τ , γ , invisible (MET), ...

Cancellation of the top loop correction to the Higgs mass **requires light third generation squarks**

Direct production cross section is relatively small compared to light squark and gluino

Dedicated searches required

This presentation covers preliminary results from dedicated searches by ATLAS, all using the full 2012 dataset

Understanding the Standard Model Backgrounds

3

σ_{total} [pb] **ATLAS** Preliminary 10⁵ 35 pb⁻¹ Precision measurements of boson, LHC pp √s = 7 TeV ttbar, single top and di-boson cross 35 pb⁻¹ Theory 10⁴ • Data (L = 0.035 - 4.6 fb $^{-1}$) sections LHC pp √s = 8 TeV 10³ Theory 5.8 fb⁻¹ Data (L = 5.8 - 20 fb⁻¹) 5.8 fb⁻¹ 20 Dec 2012 **ATLAS** Preliminary 10^{2} 1.0 fb⁻¹ ∓ — Theory (approx. NNLO) for m, = 172.5 GeV 1.0 fb⁻¹ 13 fb⁻ Data 2011, √s = 7 TeV 4.6 fb⁻¹ stat. uncertainty total uncertainty 20 fb⁻¹ 10 = Channel & Lumi. 4.6 fb⁻¹ σ., ±(stat) ±(syst) ±(lumi) 2.1 fb⁻¹ \$ 4.6 fb⁻¹ Single lepton 0.70 fb⁻¹ $179\pm\,4\pm\,9\pm\,7~\text{pb}$ 0.70 fb⁻¹ $173 \pm 6^{+14}_{-11} \pm 7^{+8}_{-7}$ pb Dilepton 1 Ζ tŦ WW WZ W t Wt ZZ All hadronic $167 \pm 18 \pm 78 \pm 6 \text{ pb}$ 1.02 fb⁻¹ $177 \pm 3^{+8}_{-7} \pm 7 \text{ pb}$ Combination Crucial to demonstrate detector Single lepton, $b \rightarrow X \mu v$ $165 \pm 2 \pm 17 \pm 3 \text{ pb}$ 4.66 fb performance and measure Standard 1.67 fb⁻¹ τ_{had} + jets 194 ± 18 ± 46 pb 2.05 fb⁻¹ $186 \pm 13 \pm 20 \pm 7 \text{ pb}$ τ_{had} + lepton Model to great accuracy $168 \pm 12 + 60 \pm 6 \text{ pb}$ All hadronic 4.7 fb^{-*} 150 50 100 200 250 300 350 $\sigma_{t\bar{t}}$ [pb] THE UNIVERSITY DELAI

HOWTO search for SUSY

SUSY searches rely primarily on the understanding of the SM backgrounds

Standard Model Top, multijets V, VV, VVV, Higgs & combinations of these Irreducible backgrounds Reducible backgrounds Combined fit of all regions and Determined from data Dominant sources: normalise backgrounds and Backgrounds and methods MC in data control regions incl. systematic Subdominant sources: MC depend on analyses exp. and theor. uncertainties as nuisance Validation parameters Validation regions used to cross check SM predictions with data Signal regions

blinded

blinded

3rd generation topologies

Decays to b chargino or heavy neutralinos also possible

Scalar bottom searches

$$m_{CT}^{2}(v_{1}, v_{2}) = [E_{T}(v_{1}) + E_{T}(v_{2})]^{2} - [p_{T}(v_{1}) - p_{T}(v_{2})]^{2}$$

from single lep or

 e/μ control region

$$H_{T,3} = \sum_{i=4} (p_T^{\text{jet}})_i$$

n

0 lepton + 2 b-jets + MET Primary signature for direct sbottom production Direct Stop sensitivity for small $\Delta m(\tilde{\chi}^{\pm}, \tilde{\chi}^{0})$ in $\tilde{t}_{1} \rightarrow b \tilde{\chi}^{\pm}$

Analysis method:

- Trigger: E_T^{miss}
- Selection: E_T^{miss}, 2-b-jets, lepton veto
- Large $\Delta m(b_1, \chi^0_1)$: large m_{CT} , $m_{bb} > 200 GeV$, 3^{rd} jet veto
- Small $\Delta m(b_1, \chi^0_1)$: require an anti- b-tagged ISR jet, large $H_{T,3}$ and E_T^{miss}
- Main backgrounds: Z(vv)+bjets, W+bjets, tt

from Z(II)+bjets control region

Olepton + 6 jets (2 b-jets) +E_T^{miss} analyses

	Signal
Trigger	$E_{\mathrm{T}}^{\mathrm{miss}}$
N _{lep}	0
p_{T}^{ℓ}	< 10 (10)
$p_{\mathrm{T}}^{\ell_2}$	—
$m_{\ell\ell}$	_
N _{jet}	≥ 6
p_{T}^{jet}	> 80,80,35,35
N _{b-jet}	≥ 2
m_{jjj}	80 to 270
$E_{\mathrm{T}}^{\mathrm{miss}}$	> 200, 300, 350
$E_{\mathrm{T}}^{\mathrm{miss,track}}$	> 30
$\Delta \phi(E_{\rm T}^{\rm miss}, E_{\rm T}^{\rm miss, track})$	$<\pi/3$
$m_{ m T}(\ell, E_{ m T}^{ m miss})$	—
$\Delta \phi$ (jet, E_{T}^{miss})	$>\pi/5$
$m_{\rm T}(b\text{-jet}, E_{\rm T}^{\rm miss})$	> 175
Tau veto	yes

Main Backgrounds

- Semileptonic tt with one missing (or hadronic tau) lepton: normalise with 1-lepton control region (CR) in data
- Z(vv)+jets normalise with Z(II) CR
- tt + W/Z taken from MC

t Challenging fully hadronic search exploiting large MET regime, sensitive to t+LSP decays

Events / 50 GeV

 10^{3}

 10^{2}

10

Data / SM

p

0.5 0E

	ATLAS
	2

Requirement	SRtN1_shape	SRtN2	SRtN3	SRbC1	SRbC2	SRbC3	_
$\Delta \varphi(\text{jet}_1, \vec{p}_T^{\text{miss}}) >$	0.8	-	0.8	0.8	0.8	0.8	JeV
$\Delta \varphi(\text{jet}_2, \vec{p}_{\text{T}}^{\text{miss}}) >$	0.8	0.8	0.8	0.8	0.8	0.8	95 95
$E_{\rm T}^{\rm miss}$ [GeV] >	100(*)	200	275	150	160	160	E
$E_{\mathrm{T}}^{\mathrm{miss}}/\sqrt{H_{\mathrm{T}}} \mathrm{[GeV^{1/2}]} >$	5	13	11	7	8	8	
$m_{\rm T} [{\rm GeV}] >$	60(*)	140	200	120	120	120	
m _{eff} [GeV] >	-	-	-	-	550	700	
am_{T2} [GeV] >	-	170	175	-	175	200	
$m_{T2}^{\tau} [\text{GeV}] >$	-	-	80	-	-	-	
m_{jjj}	Yes	Yes	Yes	-	-	-	
$N^{iso-trk} = 0$	-	-	-	Yes	Yes	Yes	
Number of b -jets \geq	1	1	1	1	2	2	
<i>p</i> _T (leading <i>b</i> -jet) [GeV] >	25	25	25	25	100	120	
$p_{\rm T}$ (second <i>b</i> -jet) [GeV] >	-	-	-	-	50	90	

- Trigger: single lepton OR E_T^{miss} based
- Main background from tt and W+jets
- Six signal regions for tχ⁰₁ and bχ⁺₁
- SRtN1: shape fit of m_T and E_T^{miss} , yielding tt, W+jets and signal normalisation
- Other SR are cut-and-count with background normalized to data at low m_T

2lepton (+jets) +E_T^{miss} analyses

• For pair-produced particles with identical decay chains the variable $m_{T2}^2(p_T^{\alpha}, p_T^{\beta}, p_T^{\text{miss}}) = \min_{\substack{\mathbf{q}_T^{\prime(1)} + \mathbf{q}_T^{\prime(2)} = p_T^{\text{miss}}} \left[\max\left(M_T^2(\mathbf{p}_T^{\alpha}, \mathbf{q}_T^{\prime(1)}; m_{\alpha}, m_{\chi}), M_T^2(\mathbf{p}_T^{\beta}, \mathbf{q}_T^{\prime(2)}; m_{\beta}, m_{\chi}) \right) \right]$

is bounded from above by the parent mass. $m_{T2}(l_1, l_2, E_T^{Miss})$ bounded by W mass for WW, Wt, $t\bar{t}$ $m_{T2}(b_1, b_2, l_1 + l_2 + E_T^{Miss})$ bounded by top mass for $t\bar{t}$

ATLAS-CONF-2013-048 Search for $b\tilde{\chi}_1^{\pm}$ with large m($\tilde{\chi}_1^{\pm}$)-m($\tilde{\chi}_1^{0}$)

- Asks for large $m_{T2}(l_1, l_2, E_T^{Miss})$
- Four signal regions, one without jets: sensitive also to small $m(\tilde{t}) m(\tilde{\chi}_1^{\pm})$

ATLAS-CONF-2013-065 Search for $b\tilde{\chi}_1^{\pm}$ with large m(stop)-m($\tilde{\chi}_1^{\pm}$)

Asks for 2 b-jets and large $m_{T2}(b_1, b_2, l_1 + l_2 + E_T^{Miss})$

ATLAS-CONF-2013-065 Search for $t \widetilde{\chi}_{1}^{0}$

Multivariate analysis using 7 variables (one of them m_{T2}(I,I,E_T^{Miss}) to discriminate signal and S<u>M background</u>

2lepton + (b) jets + E_T^{miss} analyses

Events / bin

2lepton + (b) jets + E_T^{miss} analyses

W

Selections:

- 2leptons and 2 b-jets
- Leading lepton $p_T < 60 \text{ GeV}$
- m_{T2}(II, E_T^{miss}) < 90 GeV
- m_{T2}(bb,l.+l₂+E_T^{miss}) > 160 GeV
- Main backgrounds (single top and top pairs) normalized in dedicated 1b control region

channel	SR
Observed events	31
Total (constrained to CRT, CRZ) expected background events	26 ± 6
Fitted <i>tī</i> events	14 ± 4
Fitted $Z\gamma^* \rightarrow ee, \mu\mu+jets$ events	$0.23^{+0.30}_{-0.23}$
Expected $Z\gamma^* \rightarrow \tau\tau$ +jets events	0.80 ± 0.21
Expected Wt events	9 ± 4
Expected WW events	0.01+0.34
Expected $t\bar{t} + V$ events	0.46 ± 0.16
Expected WZ, ZZ events	$0.08^{+0.09}_{-0.08}$
Expected events with fake leptons	1.8 ± 0.9
Fit input, expectation tī	12 ± 5
Fit input, expectation $Z\gamma^* \rightarrow ee, \mu\mu$ +jets	0.15 ± 0.15

2lepton + (b) jets + E_T^{miss} analyses: MultiVariate Analysis

- Preselection: 2jets with $p_T > 50 \text{GeV}$, $M_{\text{eff}} > 300 \text{GeV}$, E_T^{miss} and leading lepton p_T cuts
- Train a BDT algorithm using
 - $E_{T}^{miss}, m(II), m_{T2}(I_{1}, I_{2}, E_{T}^{miss})$
 - Azimuthal and polar angle differences between the leptons
 - Δ ϕ (E_T^{miss}, jet1) and Δ ϕ (lep1, jet1)
- Separate trainings for different signal masses and for same flavour (SF) and different flavour (DF) leptons: 7 DF and 4 SF signal regions defined
- Limits combining the best expected DF and SF SR for each mass point

Backgrounds:

- Top pair normalized to control regions with low BDT values
- Fake leptons evaluated directly from data
- Other backgrounds from MC

AT LAS

If $\Delta m(t-\boldsymbol{\chi}_{1}^{0}) < m_{W}$ and $m(t) < m(\boldsymbol{\chi}_{1}^{\pm})$:

 $\tilde{t} \to c \tilde{\chi}^0 \longleftarrow$ Target of this analysis $\tilde{t} \to bff' \tilde{\chi}^0$

- Need one hard ISR/FSR jet to boost the stop in order to trigger and separate signal from background.
- If $\Delta m(t-\chi_1^0)$ is moderate (20-80 GeV) the charm can be detected and tagged.
- O Ask for ≥4 jets, some charm tagged, large E_T^{miss}, high pT untagged leading jet
- If $\Delta m(t-\chi_1^0)$ is very low, the charm jets are too soft to be efficiently detected
- \circ Ask for 1-3 jets, high pT leading jet, large E_T^{miss}
- E_T^{miss} trigger used for both selections

$\tilde{t}_1 \rightarrow c \ \tilde{\chi}^0_1$: selections

Charm Tagging: a multivariate algorithm provides light/gluon, charm and b jet weights - Form anti-u and anti-b discriminators

- Cut on $log(P_c/P_u)$ and $log(P_c/P_b)$ to separate charm jets from light quark/gluon and b-jets <u>Medium cuts</u>: 20% efficiency, factor 140(5) rejection against light(b)-jets

Loose cuts: 95% efficiency, factor 2 rejection of b-jets

Selection criteria								
Preselection								
Primary vertex								
$E_{\rm T}^{\rm miss} > 120 { m ~GeV}$								
Jet quality requirements								
At least one jet with $p_{\rm T} > 120 \text{ GeV}$ at	At least one jet with $p_{\rm T} > 120 \text{ GeV}$ and $ \eta < 2.8$							
Lepton vetoes: no isolated electrons (muons) with $p_{\rm T} > 20 \text{ GeV} (p_{\rm T} > 10 \text{ GeV})$								
Monojet-like selection N	11	Charm-tagged selection C1						
At most three jets with $p_{\rm T} > 30 \text{ GeV}$	and $ \eta < 2.8$	At least three jets with $p_{\rm T} > 30$ GeV and $ \eta < 2.5$						
		(in addition to the leading jet)						
		<i>b</i> -veto for second and third jet						
		<i>medium c</i> -tag for fourth jet						
$\Delta \phi(\text{jet}, \mathbf{p}_{\text{T}}^{\text{miss}}) > 0.4$		$\Delta \phi(\text{jet}, \mathbf{p}_{\text{T}}^{\text{miss}}) > 0.4$						
minimum leading jet $p_{\rm T}$ (GeV)	280	270						
minimum $E_{\rm T}^{\rm miss}$ (GeV)	220	410						

$\tilde{t}_1 \rightarrow c \tilde{\chi}_1^0$: results

 340 ± 340

Good agreement in the signal regions for the two types of topologies

1000

Set limits

700

600

— Data 2012

Standard Model

 $Z (\rightarrow vv) + jets$

 $Z (\rightarrow II) + jets$

dibosons

W (\rightarrow I v)+jets

tt (+X) + single top

m(ĩ, χ̃) = (200, 195) GeV

m(ĩ,,,) = (200,125) GeV=

00 800 900 10 Leading jet p₊ [GeV]

=

multijets

 $\tilde{t}_1 \rightarrow c \tilde{\chi}^0_1$: exclusions

Charm-tagged search extends reach where other decay modes are excluded

Oleptons + 2b-jets + E_T^{miss} (ATLAS-CONF-2013-053)

```
Z + b-jet + jets + E_{T}^{miss} (ATLAS-CONF-2013-025)
```

```
2 charm-jets + E<sub>T</sub><sup>miss</sup> (ATLAS-CONF-2013-068)
```


Stop searches - summary

< 106 GeV

m_x⁰ [GeV]

 $m_{\tilde{t}_{i}}$ [GeV]

:DD

Stop searches - summary

AT LAS

Stop searches - summary

THE UNIVERSITY DELAIDE

Most recent ATLAS references (using full 8TeV dataset): ATLAS-CONF-2013-024, ATLAS-CONF-2013-037, ATLAS-CONF-2013-048, ATLAS-CONF-2013-053, ATLAS-CONF-2013-065, ATLAS-CONF-2013-068

Summary

- No stop or sbottom discovered as yet
 - Limits on their masses placed for a variety of decays
- First LHC search for stop decaying to charm neutralino has been performed
 - stop mass limit of 230GeV for $m(\chi_1^0)=200$ GeV

ATLAS SUSY Searches* - 95% CL Lower Limits

Status: SUSY 2013

	Model	e, μ , τ , γ	Jets	E ^{miss} T	∫£ dt[fb	-1]	Mass	limit		Reference
	$\tilde{b}_1 \tilde{b}_1, \tilde{b}_1 \rightarrow b \tilde{\chi}_1^0$	0	2 b	Yes	20.1	b 1		100-630 GeV	m($\overline{t_1}^0$)<100 GeV	ATLAS-CONF-2013-053
	$\tilde{b}_1 \tilde{b}_1, \tilde{b}_1 \rightarrow t \tilde{\chi}_1^*$	2 e, µ (SS)	0-3 b	Yes	20.7	b ₁		430 GeV	$m(\tilde{t}_{1}^{*})=2 m(\tilde{t}_{1}^{0})$	ATLAS-CONF-2013-007
온호	$\tilde{t}_1 \tilde{t}_1$ (light), $\tilde{t}_1 \rightarrow b \tilde{\chi}_1^+$	1-2 e,µ	1-2 b	Yes	4.7	ī,	167 GeV		m(χ_1^0)=55 GeV	1208.4305, 1209.2102
gg	$\tilde{t}_1 \tilde{t}_1$ (light), $\tilde{t}_1 \rightarrow Wb \tilde{t}_1^0$	2 e, µ	0-2 jets	Yes	20.3	Ť1	220 GeV		$m(\tilde{\chi}_{1}^{0}) = m(\tilde{t}_{1}) - m(W) - 50 \text{ GeV}, m(\tilde{t}_{1}) < < m(\tilde{\chi}_{1}^{*})$	ATLAS-CONF-2013-048
50	$\tilde{t}_1 \tilde{t}_1 \pmod{m}$, $\tilde{t}_1 \rightarrow t \tilde{t}_1^0$	2 e, µ	2 jets	Yes	20.3	t ₁		225-525 GeV	m($\bar{\ell}_1^0$)=0 GeV	ATLAS-CONF-2013-065
2.5	$\tilde{t}_1 \tilde{t}_1 (\text{medium}), \tilde{t}_1 \rightarrow b \tilde{t}_1^{\dagger}$	0	2 b	Yes	20.1	ī,		150-580 GeV	m($\tilde{\ell}_1^0$)<200 GeV, m($\tilde{\ell}_1^+$)-m($\tilde{\ell}_1^0$)=5 GeV	ATLAS-CONF-2013-053
ě z	$\tilde{t}_1 \tilde{t}_1 (heavy), \tilde{t}_1 \rightarrow t \tilde{\chi}_1^0$	1 e, µ	1 b	Yes	20.7	t ₁		200-610 GeV	m(\overline{c}_{1}^{0})=0 GeV	ATLAS-CONF-2013-037
~~ē	$\tilde{t}_1 \tilde{t}_1 (\text{heavy}), \tilde{t}_1 \rightarrow t \tilde{\chi}_1^0$	0	2 b	Yes	20.5	Ē1		320-660 GeV	$m(\overline{\chi}_1^0)=0$ GeV	ATLAS-CONF-2013-024
ଳ ଅ	$\overline{t}_1 \overline{t}_1, \overline{t}_1 \rightarrow C \overline{\chi}_1^0$	0 m	iono-jet/c-t	ag Yes	20.3	Ť1	200 GeV		m(ī ₁)-m(ī ⁰)<85 GeV	ATLAS-CONF-2013-068
	t ₁ t ₁ (natural GMSB)	2 e, µ (Z)	1 b	Yes	20.7	Ĩ,		500 GeV	m($\bar{t_1}^0$)>150 GeV	ATLAS-CONF-2013-025
	$\tilde{t}_2 \tilde{t}_2, \tilde{t}_2 \rightarrow \tilde{t}_1 + Z$	3e,μ(Ζ)	1 b	Yes	20.7	ī,		520 GeV	$m(\bar{t}_1)=m(\bar{t}_1^0)+180 \text{ GeV}$	ATLAS-CONF-2013-025

ATLAS Preliminary

 $\int \mathcal{L} dt = (4.6 - 22.9) \text{ fb}^{-1} \quad \sqrt{s} = 7, 8 \text{ TeV}$

Thank you for your attention!

p.jackson@adelaide.edu.au

ATLAS SUSY Searches

ATLAS SUSY Searches* - 95% CL Lower Limits

Status: SUSY 2013

	Model	e, μ, τ, γ	Jets	${\pmb E}_{\sf T}^{\sf miss}$	∫£ dt[fb	¹] Mass limit	Reference
Inclusive Searches	$\begin{array}{c} \text{MSUGRA/CMSSM} \\ \text{MSUGRA/CMSSM} \\ \text{MSUGRA/CMSSM} \\ \tilde{q}\bar{q}, \tilde{q} \rightarrow \tilde{q}_{1}^{0} \\ \tilde{g}\tilde{g}, \tilde{g} \rightarrow q\tilde{q}_{1}^{0} \\ \tilde{g}\tilde{g}, \tilde{g} \rightarrow q\tilde{q}_{1}^{1} \rightarrow qqW^{\pm}\tilde{\chi}_{1}^{0} \\ \tilde{g}\tilde{g}, \tilde{g} \rightarrow gq(\ell\ell/\ell^{\prime}/\nu^{\prime})\tilde{\chi}_{1}^{0} \\ \text{GMSB} (\ell \text{ NLSP}) \\ \text{GMSB} (\ell \text{ NLSP}) \\ \text{GGM} (bino \text{ NLSP}) \\ \text{GGM} (bino \text{ NLSP}) \\ \text{GGM} (higgsino-bino \text{ NLSP}) \\ \text{GGM} (higgsino \text{ NLSP}) \\ \text{Gravitino LSP} \\ \end{array}$	$\begin{matrix} 0 \\ 1 \ e, \mu \\ 0 \\ 0 \\ 1 \ e, \mu \\ 2 \ e, \mu \\ 1.2 \ \tau \\ 2 \ \gamma \\ 1 \ e, \mu + \gamma \\ \gamma \\ 2 \ e, \mu (Z) \\ 0 \end{matrix}$	2-6 jets 3-6 jets 7-10 jets 2-6 jets 3-6 jets 3-6 jets 0-3 jets 0-2 jets 1 b 0-3 jets mono-jet	Yes Yes Yes Yes Yes Yes Yes Yes Yes Yes	20.3 20.3 20.3 20.3 20.3 20.3 20.3 20.3	$ \begin{array}{c c c c c c c c c c c c c c c c c c c $	ATLAS-CONF-2013-047 ATLAS-CONF-2013-062 1308.1841 ATLAS-CONF-2013-047 ATLAS-CONF-2013-047 ATLAS-CONF-2013-062 ATLAS-CONF-2013-089 1208.4688 ATLAS-CONF-2013-026 1209.0753 ATLAS-CONF-2012-144 1211.1167 ATLAS-CONF-2012-152 ATLAS-CONF-2012-152
3 rd gen. ã med	$ \begin{array}{c} \tilde{g} \rightarrow b \tilde{\tilde{\chi}}_{1}^{0} \\ \tilde{g} \rightarrow t \tilde{t} \tilde{\tilde{\chi}}_{1}^{1} \\ \tilde{g} \rightarrow t \tilde{t} \tilde{\tilde{\chi}}_{1}^{1} \\ \tilde{g} \rightarrow b \tilde{t} \tilde{\tilde{\chi}}_{1}^{1} \end{array} $	0 0 0-1 e,μ 0-1 e,μ	3 b 7-10 jets 3 b 3 b	Yes Yes Yes Yes	20.1 20.3 20.1 20.1	š 1.2 TeV m(t ²)<600 GeV ğ 1.1 TeV m(t ²)<350 GeV	ATLAS-CONF-2013-061 1308.1841 ATLAS-CONF-2013-061 ATLAS-CONF-2013-061
3rd gen. squarks direct production	$\begin{array}{c} b_1 b_1, b_1 \rightarrow b \tilde{\chi}_1^{\circ} \\ b_1 \bar{b}_1, \bar{b}_1 \rightarrow t \tilde{\chi}_1^{\circ} \\ \tilde{\chi}_1 \tilde{\chi}_1(\text{light}), \tilde{\chi}_1 \rightarrow b \tilde{\chi}_1^{\circ} \\ \tilde{\chi}_1 \tilde{\chi}_1(\text{light}), \tilde{\chi}_1 \rightarrow b \tilde{\chi}_1^{\circ} \\ \tilde{\chi}_1 \tilde{\chi}_1(\text{light}), \tilde{\chi}_1 \rightarrow b \tilde{\chi}_1^{\circ} \\ \tilde{\chi}_1 \tilde{\chi}_1(\text{medium}), \tilde{\chi}_1 \rightarrow t \tilde{\chi}_1^{\circ} \\ \tilde{\chi}_1 \tilde{\chi}_1(\text{measy}), \tilde{\chi}_1 \rightarrow t \tilde{\chi}_1^{\circ} \\ \tilde{\chi}_1 \tilde{\chi}_1(\text{heavy}), \tilde{\chi}_1 \rightarrow t \tilde{\chi}_1^{\circ} \\ \tilde{\chi}_1 \tilde{\chi}_1(\text{heavy}), \tilde{\chi}_1 \rightarrow t \tilde{\chi}_1^{\circ} \\ \tilde{\chi}_1 \tilde{\chi}_1(\text{neatural GMSB}) \\ \tilde{\chi}_1 \tilde{\chi}_1 \tilde{\chi}_2 \tilde{\chi}_2 \rightarrow \tilde{\chi}_1 + Z \end{array}$	$\begin{array}{c} 0\\ 2 \ e, \mu \ (\text{SS})\\ 1-2 \ e, \mu\\ 2 \ e, \mu\\ 2 \ e, \mu\\ 0\\ 1 \ e, \mu\\ 0\\ 1 \ e, \mu\\ 0\\ 3 \ e, \mu \ (Z) \end{array}$	2 b 0-3 b 1-2 b 0-2 jets 2 jets 2 b 1 b 2 b ono-jet/ <i>c</i> -t 1 b 1 b	Yes Yes Yes Yes Yes Yes Yes ag Yes Yes Yes	20.1 20.7 4.7 20.3 20.3 20.1 20.7 20.5 20.3 20.7 20.7	$ \begin{array}{c c c c c c c c c c c c c c c c c c c $	1308.2631 ATLAS-CONF-2013-007 1208.4305, 1209.2102 ATLAS-CONF-2013-048 ATLAS-CONF-2013-065 1308.2631 ATLAS-CONF-2013-037 ATLAS-CONF-2013-024 ATLAS-CONF-2013-025 ATLAS-CONF-2013-025
EW	$\begin{array}{c} \tilde{\xi}_{L,R} \tilde{\ell}_{L,R}, \tilde{\ell} \rightarrow \ell \tilde{\chi}_{1}^{0} \\ \tilde{\chi}_{1}, \tilde{\chi}_{1}^{-}, \tilde{\chi}_{1}^{+} \rightarrow \tilde{\ell}_{\nu}(\ell \tilde{\nu}) \\ \tilde{\chi}_{1}^{+} \tilde{\chi}_{2}^{-}, \tilde{\chi}_{1}^{+} \rightarrow \tilde{\ell}_{\nu}(\ell \tilde{\nu}) \\ \tilde{\chi}_{1}^{+} \tilde{\chi}_{2}^{0} \rightarrow \ell_{1} \nu \tilde{\ell}_{1}(\ell \tilde{\nu}), \ell \tilde{\nu} \tilde{\ell}_{L} \ell (\tilde{\nu}) \\ \tilde{\chi}_{1}^{+} \tilde{\chi}_{2}^{0} \rightarrow W \tilde{\chi}_{1}^{0} \tilde{\chi}_{1}^{0} \\ \tilde{\chi}_{1}^{+} \tilde{\chi}_{2}^{0} \rightarrow W \tilde{\chi}_{1}^{0} \tilde{\chi}_{1}^{0} \end{array}$	2 e, μ 2 e, μ 2 τ 3 e, μ 3 e, μ 1 e, μ	0 0 - 0 2 <i>b</i>	Yes Yes Yes Yes Yes Yes	20.3 20.3 20.7 20.7 20.7 20.3	$ \begin{array}{c c c c c c c c c c c c c c c c c c c $	ATLAS-CONF-2013-049 ATLAS-CONF-2013-049 ATLAS-CONF-2013-028 ATLAS-CONF-2013-035 ATLAS-CONF-2013-035 ATLAS-CONF-2013-093
Long-lived	$\begin{array}{l} \text{Direct} \tilde{\chi}_1^+ \tilde{\chi}_1^- \text{ prod., long-lived } \tilde{\chi}_1^+ \\ \text{Stable, stopped } \tilde{g} \text{ R-hadron} \\ \text{GMSB, stable } \tilde{\tau}, \tilde{\chi}_1^0 \rightarrow \tilde{\tau}(\tilde{e}, \tilde{\mu})_+ \tau \\ \text{GMSB, } \tilde{\chi}_1^0 \rightarrow \gamma \tilde{G}, \text{ long-lived } \tilde{\chi}_1^0 \\ \tilde{q}\tilde{q}, \tilde{\chi}_1^0 \rightarrow q q (\text{RPV}) \end{array}$	Disapp. trk 0 e, μ) 1-2 μ 2 γ 1 μ, displ. vtx	1 jet 1-5 jets - - -	Yes Yes - Yes -	20.3 22.9 15.9 4.7 20.3	$ \begin{array}{c c c c c c c c c c c c c c c c c c c $	ATLAS-CONF-2013-069 ATLAS-CONF-2013-057 ATLAS-CONF-2013-058 1304.6310 ATLAS-CONF-2013-092
RPV	$ \begin{array}{l} LFV pp \rightarrow \widetilde{v}_{\tau} + X, \widetilde{v}_{\tau} \rightarrow e + \mu \\ LFV pp \rightarrow \widetilde{v}_{\tau} + X, \widetilde{v}_{\tau} \rightarrow e(\mu) + \tau \\ Bilinear \ RPV \ CMSSM \\ \widetilde{x}_1^+ \widetilde{x}_1^-, \widetilde{x}_1^+ \rightarrow W \widetilde{x}_1^0, \widetilde{x}_1^0 \rightarrow ee\widetilde{v}_{\mu}, e\mu \\ \widetilde{x}_1^+ \widetilde{x}_1^-, \widetilde{x}_1^+ \rightarrow W \widetilde{x}_1^0, \widetilde{x}_1^0 \rightarrow \tau \tau \widetilde{v}_e, e\tau i \\ \widetilde{g} \rightarrow qqq \\ \widetilde{g} \rightarrow \widetilde{t}_1 t, \ \widetilde{t}_1 \rightarrow bs \end{array} $	$2 e, \mu$ $1 e, \mu + \tau$ $1 e, \mu$ $\tilde{v}_{e} 4 e, \mu$ $\tilde{v}_{\tau} 3 e, \mu + \tau$ 0 $2 e, \mu (SS)$	- 7 jets - 6-7 jets 0-3 <i>b</i>	- Yes Yes Yes - Yes	4.6 4.6 4.7 20.7 20.7 20.3 20.7	\$\vec{v}_r\$ 1.61 TeV $\lambda'_{311}=0.10, \lambda_{132}=0.05$ \$\vec{v}_r\$ 1.1 TeV $\lambda'_{311}=0.10, \lambda_{12(33)}=0.05$ \$\vec{u}_r\$ 1.2 TeV m(\$\vec{v}_{111}=0.10, \lambda_{12(33)}=0.05) \$\vec{u}_r\$ 1.2 TeV m(\$\vec{v}_{111}=0.10, \lambda_{12(31)}=0.05) \$\vec{u}_r\$ 1.2 TeV m(\$\vec{v}_{111}=0.00, \lambda_{12(31)}=0) \$\vec{u}_r\$ 1.2 TeV m(\$\vec{v}_{111}=0.00, \lambda_{12(31)}=0) \$\vec{u}_r\$ 1.2 TeV m(\$\vec{v}_{111}=0.00, \lambda_{12(31)}=0) \$\vec{u}_r\$ 1.2 TeV m(\$\vec{v}_{111}=0.00, \lambda_{12(21)}=0) \$\vec{u}_r\$ 1.2 TeV 1.2 TeV 1.2 TeV	1212.1272 1212.1272 ATLAS-CONF-2012-140 ATLAS-CONF-2013-036 ATLAS-CONF-2013-036 ATLAS-CONF-2013-091 ATLAS-CONF-2013-007
Other	Scalar gluon pair, sgluon $\rightarrow q\bar{q}$ Scalar gluon pair, sgluon $\rightarrow t\bar{t}$ WIMP interaction (D5, Dirac χ)	$ \begin{array}{c} 0\\ 2 e, \mu (SS)\\ 0 \end{array} $	4 jets 1 <i>b</i> mono-jet	- Yes Yes	4.6 14.3 10.5	sgluon 100-287 GeV incl. limit from 1110.2693 sgluon 800 GeV m(χ)<80 GeV, limit of <687 GeV for D8	1210.4826 ATLAS-CONF-2013-051 ATLAS-CONF-2012-147
	full data	partial data	full	data		10^{-1} Mass scale [TeV]	

*Only a selection of the available mass limits on new states or phenomena is shown. All limits quoted are observed minus 1 σ theoretical signal cross section uncertainty.

ATLAS Preliminary

 $\int \mathcal{L} dt = (4.6 - 22.9) \text{ fb}^{-1} \qquad \sqrt{s} = 7, 8 \text{ TeV}$

SUSY - 3rd Generation

Most recent ATLAS references (using full 8TeV dataset): ATLAS-CONF-2013-024, ATLAS-CONF-2013-037, ATLAS-CONF-2013-048, ATLAS-CONF-2013-053, ATLAS-CONF-2013-065, ATLAS-CONF-2013-068

Pile-up in 2012

Mean Number of Interactions per Crossing

Mostly affects analyses with jets, bjets, taus and missing transverse momentum. Along with triggering and computing.

Tracking, electrons, muons and photons less sensitive

$Z \rightarrow \mu \mu$ event in ATLAS with 25 reconstructed vertices

