Four dimensional supersymmetric Yang-Mills quantum mechanics with SU(3) gauge group.

Zbigniew Ambroziński

Jagiellonian University, Krakow, Poland Max Planck Institute, Potsdam, Germany
zbigniew.ambrozinski@uj.edu.pl

29.08.2013
work done in collaboration with P. Korcyl and J. Wosiek

The model

The hamiltonian is given by

$$
\begin{gathered}
H=\frac{1}{2} p_{a}^{i} p_{a}^{i}+\frac{g^{2}}{4} f_{a b c} f_{a d e} x_{b}^{i} x_{c}^{j} x_{d}^{i} x_{e}^{j}+\frac{i g}{2} f_{a b c} \psi_{a}^{T} \Gamma^{i} \psi_{b} x_{c}^{i} \\
\\
i, j=1, \ldots, D-1-\text { spatial indices } \\
a, b, c, d, e=1, \ldots, N^{2}-1 \text { - color indices } \\
\psi_{a, \alpha}-\text { Majorana spinor }
\end{gathered}
$$

H is supersymmetric. Supersymmetry generators are:

$$
\begin{equation*}
Q_{\alpha}=\left(\Gamma^{i} \psi_{a}\right)_{\alpha} p_{a}^{i}+i g f_{a b c}\left(\Sigma^{i j} \psi_{a}\right)_{\alpha} x_{b}^{i} x_{c}^{j}, \tag{1}
\end{equation*}
$$

where Γ^{k} - alpha matrices, $\Sigma^{i j}=-\frac{i}{4}\left[\Gamma^{i}, \Gamma^{j}\right]$.

$$
\begin{equation*}
\left\{Q_{\alpha}, Q_{\beta}^{\dagger}\right\}=4 H \delta_{\alpha \beta} \tag{2}
\end{equation*}
$$

In our case $D=4, N=3$.

Motivations

BFSS conjecture

uncompactified 11 dimensional M-theory \Leftrightarrow large N limit of supersymmetric quantum mechanics in 10 dimensions [BFSS]

small volume approximation to QCD

bosonic sector of considered model is 0 - order approximation of QCD in small volume approach (i.e.: dynamics of homogeneous fields)

Earlier results - overview

- analytical and numerical results for $D=2$ and arbitrary N [Trzetrzelewski; Korcyl]
- numerical results for $D=4, N \leq 6$ in bosonic sector only as 0-order approximation to Yang-Mills QFTs [Lüscher; Ziemann]
- numerical results for $D=4, N=2$ [Wosiek, Campostrini]
- numerical results at finite tempetature [Catterall, Wiseman; Anagnostopoulos et al.]

Method

- construct Fock space of gauge invariant states with cutoff on number of bosonic excitations
- construct matrices of hamiltonian, angular momentum and supersymmetry generators
- for energies - diagonalize the hamiltonian
- fermionic number is conserved (for $D=2,4$) - consider each fermionic sector separately
- rotation symmetry - use sectors of definite angular momentum

What do we obtain

- energies (with distinction between continuous and discrete spectrum)
- energy eigenstates (with definite fermion number and angular momentum)
- supersymmetric fractions \rightarrow identifying supermultiplets
- restricted Witten index (sum over sectors with n_{F} even)

Energies in bosonic sector

Very fast convergence of lowest energies \Rightarrow spectrum is discrete.

Digression: signature of continuous spectrum

Spectrum is continuous for kinetic energy only: $H=\frac{1}{2} p_{a}^{i} p_{a}^{i}$.

Energy behavior is $E \sim 1 / N_{\text {cut }}$.

Energies in sector with one fermion

Still only discrete spectrum.

Energies in sector with two fermions

Spectrum is rather discrete.

Energies in sector with three fermions

Candidate for continuous spectrum.

Supersymmetric fractions

$$
\begin{aligned}
\mathcal{Q}_{1 / 2}^{\dagger} & =\frac{1}{2}\left(Q_{1}-i Q_{2}+Q_{3}+i Q_{4}\right) \\
\mathcal{Q}_{-1 / 2}^{\dagger} & =\frac{1}{2}\left(i Q_{1}+Q_{2}-i Q_{3}+Q_{4}\right)
\end{aligned}
$$

$$
H=\frac{1}{4}\left\{\mathcal{Q}, \mathcal{Q}^{\dagger}\right\}
$$

$\left|n_{F} j m E\right\rangle$ - eigenstate of hamiltonian

$$
\begin{aligned}
(2 j+1) & =\frac{1}{E}\left\langle n_{F} j m E\right| H\left|n_{F} j m E\right\rangle \\
& =\sum_{j^{\prime} E^{\prime}}(\underbrace{\left.\frac{1}{4 E} \sum_{m m^{\prime}}\left|\left\langle\left(n_{F}-1\right) j^{\prime} m^{\prime} E^{\prime}\right| \mathcal{Q}\right| n_{F} j m E\right\rangle\left.\right|^{2}}_{\text {supersymmetric fraction } q_{n_{F}}\left(j^{\prime} E^{\prime} \mid j E\right)}+q_{n_{F}+1}\left(j E \mid j^{\prime} E^{\prime}\right))
\end{aligned}
$$

supermultiplets form diamonds like that on the right

Overall picture - identification of supermultiplets

Our results vs earlier results of [Campostrini, Wosiek] for $S U(2)$.
Single lines mean that the whole supermultiplet was not identified.

Conclusions

- our method gives us a qualitative picture of the spectrum
- the cutoff is still too low (for larger number of fermions) to determine continuous spectrum and to calculate Witten index

Conclusions

- our method gives us a qualitative picture of the spectrum
- the cutoff is still too low (for larger number of fermions) to determine continuous spectrum and to calculate Witten index

Main challenge

size of basis

- at present we have matrices of sizes up to $4 \mathrm{k} \times 4 \mathrm{k}$
- getting $n b=7$ in each fermion sector would require matrices $1 M \times 1 M$
- possible solution for higher D or N : take only most significant basis states?

Literature

- T. Banks, W. Fischler, S.H. Shenker, L. Susskind, M theory as a matrix model: A Conjecture, Phys.Rev. D55 (1997) 5112-5128
- M. Trzetrzelewski, Large N behavior of two dimensional supersymmetric Yang-Mills quantum mechanics, J.Math.Phys. 48 (2007) 012203;
P. Korcyl, Solutions of $D=2$ supersymmetric Yang-Mills quantum mechanics with SU(N) gauge group, J.Math.Phys. 52 (2011) 052105
- M. Campostrini, J. Wosiek, High precision study of the structure of $D=4$ supersymmetric Yang-Mills quantum mechanics, Nucl.Phys. B703 (2004) 454-498
- M. Lüscher, G. Münster, Weak Coupling Expansion of the Low Lying Energy Values in the SU(2) Gauge Theory on a Torus, Nucl.Phys. B232 (1984) 445; V. Ziemann, Qualitative Untersuchung des niedrig liegenden Spektrums reiner Yang-Mills Theorien im endlichen Volumen mit besonderer Bercksichtigung von SU(3), Diploma Thesis, Universitt Hamburg, 1986
- S. Catterall, T. Wiseman Black hole thermodynamics from simulations of lattice Yang-Mills theory, Phys.Rev.D 78 (2008) 041502;
S. Catterall, T. Wiseman, Towards lattice simulation of the gauge theory duals to black holes and hot strings, JHEP 0712 (2007) 104
- K. N. Anagnostopoulos, M. Hanada, J. Nishimura and S. Takeuchi, Monte Carlo studies of supersymmetric matrix quantum mechanics with sixteen supercharges at finite temperature, Phys.Rev.Lett. 100 (2008) 021601

