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Why dark radiation?

Dark radiation: hidden relativistic matter that contributes to
the energy density of the universe.
At CMB temperatures,

ρradiation = ργ + ρν + ρhidden .

Conventionally this is parametrised in terms of the “excess
effective number of neutrino species”, ∆Neff = Neff− 3.046:

ρradiation = ργ

(
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)
.
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Why dark radiation?

Experimental hints:
Important fact: Planck does not measure H0 directly!
Neff and H0 are degenerate parameters — increasing one
increases the other.
When combined with astrophysical measurements of H0,
the Planck, ACT, SPT and BAO measurements give
consistently high values of Neff, centred around Neff ' 3.6.
A recent BBN-only study (arXiv:1308.3240) suggests that

Neff = 3.57± 0.18 .

This corresponds to a significance of 2.9σ!
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Why dark radiation?

Cosmology perspective:
Simple and natural extension of ΛCDM
After inflation, universe reheated by decays of a scalar field
Any non-zero branching ratio to light hidden states is a
source of dark radiation

String theory perspective:
Generically O(100) moduli and associated light axions
In principle, many hidden-sector particles that could
behave as dark radiation

Harder to argue why dark radiation should not exist!
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LARGE Volume Scenario - key features

Compactification of type IIB string theory where the
Calabi-Yau volume V is stabilized to be exponentially large.
Field content always includes:

- the volume modulus, Φ, whose large VEV fixes the volume;
- its axion partner, the volume axion ab.

Hierarchy of scales:

Mstring ∼
MP

V1/2 � mΦ ∼
MP

V3/2 � mab . MP e−2πV2/3 ∼ 0 .

Note that the volume axion ab is effectively massless
⇒ candidate for dark radiation.
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Reheating and dark radiation

Mstring ∼
MP

V1/2 � mΦ ∼
MP

V3/2 � mab . MP e−2πV2/3 ∼ 0 .

Decay rate, Γ ∼ m3/M2
P , so Φ is the longest-living modulus

(all others have masses m ∼ Mstring).
Reheating is driven by coherent oscillations of Φ.
Dark radiation arises via the decay Φ→ ab ab.
Assume sequestering of soft scalar masses, such that

Msoft ∼ m0 ∼ m1/2 ∼
MP

V2 .

Consequently it turns out there is only one competitive
visible sector decay mode: Φ→ HuHd.
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Reheating and dark radiation

Fraction of dark radiation produced is just the ratio of
branching ratios,

κ ≡ Br(hidden)

Br(visible)
=

Br(Φ→ ab ab)

Br(Φ→ HuHd )
=

1
2Z 2 .

This tree-level result depends on the Giudice-Masiero
coupling Z associated with the process Φ→ HuHd.
Normally Z is O(1), however a shift symmetry in the Higgs
sector at the string scale would fix Z = 1.
Define Minimal LARGE Volume Scenario (MLVS) as:

- Z = 1 at the string scale;
- pure MSSM matter content.
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Tree-level result

The MLVS is now completely defined and predictive.
arXiv:1208.3562 (Cicoli, Conlon, Quevedo) and
1208.3563 (Higaki, Takahashi) found that ∆Neff ' 3.3κ.
For Z = 1 (κ = 1/2) this gives ∆Neff ' 1.7, in conflict with
observation (∆Neff ' 0.6).
Exhibits the “moduli-induced axion problem”: too much
dark radiation (see 1304.7987, talk by Nakayama).
However, Z may receive large logarithmic corrections...
need to renormalize!

Our aim: to compute the Renormalization Group running of the
coupling Z to determine its value at mΦ, the scale of reheating.

See arXiv:1305.4128 (SA, Conlon, Haisch, Powell).
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One-loop corrections

The tree-level decay Φ→ HuHd is governed by the
Lagrangian

L ⊃ 1√
6MP

[
Z HuHd �Φ + h.c.

]
.

We computed the one-loop corrections in DR scheme,
using an arbitrary Rξ gauge within Wess-Zumino gauge.
Loop corrections arise due to

- vertex renormalization;
- Hu,d wavefunction renormalization.

Corrections to the Φ wavefunction and to the Φ→ ab ab
decay are Planck-suppressed and therefore not included.
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Loop diagrams
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One-loop anomalous dimension

The running of Z is governed by the anomalous
dimension, defined by

d
d lnµ

Z = γZ Z .

The one-loop result is

γ
(1)
Z =

1
(4π)2

[
−

3g2
1

5
− 3g2

2 + 3|yt |2 + 3|yb|2 + |yτ |2
]
,

where g1 =
√

5/3g′ and g2 = g respectively.
This is just the sum of Higgs superfield anomalous
dimensions given in the literature,

γ
(1)
Z = γ

(1)
Hu

+ γ
(1)
Hd
.
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RG evolution

We computed the RG running of Z using
SOFTSUSY 3.3.7.
Included running of gauge couplings and Yukawas.
Couplings fixed by their values at the Z-boson mass, mZ .
Procedure:

- SM running from mZ to Msoft ∼ O(1TeV);
- MSSM running between Msoft and Mstring;
- MSUGRA boundary conditions and Z = 1 fixed at Mstring;
- Z evaluated at mΦ ∼ 106 GeV.

Two-loop effects were included, however these turned out
to be negligible.
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RG evolution — results
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Here are the results for
K ≡ Z (mΦ)/Z (Mstring)
using Msoft ≡

√
mt̃1

mt̃2
.

The dotted red, dotted
orange, dashed yellow,
dashed green, solid blue
and solid magenta lines
correspond to different
choices of the Higgs VEV
ratio, tanβ = 2,3,5,15,25
and 50, respectively.
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What do we learn from this?

For intermediate tanβ the coupling is enhanced, whereas
it is suppressed for large/small tanβ.
For tanβ ' 10 the enhancement saturates at K ' 1.03.
This leads to a lower bound of

∆Neff & 3.1/2K 2 ' 1.4 ,

which is not much better than the tree-level result!
Measured value is ∆Neff ' 0.57± 0.25 (Planck+H0),
corresponding to a tension of 3–4σ between theory and
experiment.
Minimal LVS ruled out!
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Summary

Dark radiation is a well-motivated addition to ΛCDM.
We have considered radiative corrections to the branching
fraction of dark radiation in the Minimal LARGE Volume
Scenario (Z = 1 and MSSM matter content).
Lower bound of ∆Neff & 1.4, which is too large to be
compatible with observations (∆Neff ' 0.57± 0.25)
⇒ minimal model ruled out.
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