Dark Radiation and Dark Matter from String Compactifications

MICHELE CICOLI

Bologna University and ICTP Trieste

SUSY 2013, ICTP, 29 Aug 2013

Based on:

- 1. Dark radiation: MC,Conlon,Quevedo, arXiv:1208.3562 [hep-th]
 - \rightarrow See talks by Nakayama + Marsh + Kersten + Angus
- 2. Dark matter: Allahverdi, MC, Dutta, Sinha, arXiv:1307.5086 [hep-ph]
 - \rightarrow See talk by Watson

Cosmological challenges for strings

Two ubiquitous problems of string compactifications:

Cosmological moduli problem [Coughlan et al][Banks et al][de Carlos et al]:

- 1. ϕ starts oscillating at $H_{\rm osc} \sim m_{\phi}$ with $\phi_0 \sim M_P$
- 2. ϕ redshifts as matter \Rightarrow dominates the energy density
- 3. ϕ decays at $H_{\rm dec} \sim \Gamma \sim \epsilon^2 m_{\phi}$ where $\epsilon \equiv m_{\phi}/M_P \ll 1$
- 4. Reheat temperature $T_{\rm rh} \sim \epsilon^{1/2} m_{\phi} > T_{\rm BBN} \simeq 3 \text{ MeV} \Rightarrow m_{\phi} > 50 \text{ TeV}$

Axionic dark matter overproduction [Preskill et al] [Abbott, Sikivie]:

- 1. $\mathcal{O}(100)$ axions in string compactifications
- 2. Some projected out, eaten up by anomalous U(1)s or heavy from NP effects
- 3. Some remain light \Rightarrow one can be the QCD axion with $f_a \sim M_s$
- 4. Overproduction of axionic cold DM for $f_a > 10^{12} \text{ GeV}$

Tension between these two problems:

 ϕ heavier/lighter than 50 TeV \Leftrightarrow high/low string scale \Leftrightarrow too much/right axion DM

Non-standard cosmology from strings

Focus on $m_{\phi} > 50 \text{ TeV} \Rightarrow \phi$ decay dilutes any previous relic [Moroi,Randall]:

- Axionic DM diluted if $T_{\rm rh} < \Lambda_{\rm QCD} \simeq 200$ MeV [Fox,Pierce,Thomas] \Rightarrow if $T_{\rm rh} \gtrsim T_{\rm BBN}$ can have $f_a \sim 10^{14}$ GeV without tuning
- Standard thermal LSP DM diluted if $T_{\rm rh} < T_{\rm f} \simeq m_{\rm DM}/20 \sim {\cal O}(10)$ GeV
- Baryon asymmetry diluted if produced before ϕ decay \Rightarrow good for Affleck-Dine baryogenesis which can be too efficient [Kane,Shao,Watson,Yu]

Decay products:

- Solution Non-thermal LSP DM from ϕ decay [Acharya et al][Allahverdi,MC,Dutta,Sinha]
 - Annihilation scenario for high $T_{\rm rh}$ (close to $T_{\rm f}$)
 - 1. abundant initial production of DM
 - 2. subsequent efficient annihilation \Rightarrow Wino/Higgsino-like DM
 - **•** Branching scenario for low $T_{\rm rh}$ (close to $T_{\rm BBN}$)
 - 1. smaller initial production of DM
 - 2. subsequent inefficient annihilation \Rightarrow Bino-like DM

Baryon asymmetry from ϕ decay \Rightarrow Co-genesis of DM and baryogenesis due to new O(TeV) coulored particles with *B*- and *CP*-violating couplings [Allahverdi,Dutta,Sinha]

Challenges for moduli decays

Two problems for moduli decays:

Gravitino problem [Endo, Hamaguchi, Takahashi] [Nakamura, Yamaguchi]:

- 1. if $m_{3/2} < m_{\phi}$ the gravitino is produced from ϕ decay
- 2. if $m_{3/2} < 50 \text{ TeV} \Rightarrow$ gravitino decays after BBN
- 3. if $m_{3/2} > 50 \text{ TeV} \Rightarrow$ gravitini could annihilate into DM \Rightarrow DM overproduction
- Axionic dark radiation overproduction [MC,Conlon,Quevedo][Higaki,Takahashi]:
 - 1. moduli are gauge singlets \Rightarrow they do not prefer to decay into visible sector fields
 - 2. large branching ratio into light axions \Rightarrow large $N_{\rm eff}$

$$\rho_{\rm rad} = \rho_{\gamma} \left(1 + \frac{7}{8} \left(\frac{4}{11} \right)^{4/3} N_{\rm eff} \right)$$

3. Tight bounds from observations (Planck+WMAP9+ACT+SPT+BAO+HST): $N_{\rm eff} = 3.52^{+0.48}_{-0.45}$ 95% CL $\Rightarrow \Delta N_{\rm eff} \simeq 0.5$

LARGE Volume Scenario

Type IIB LVS models: moduli masses and couplings can be computed explicitly \Rightarrow can study cosmological history of the universe

Lightest modulus mass:

$$m_{\phi} \simeq m_{3/2} \sqrt{\epsilon} \ll m_{3/2}$$
 where $\epsilon \equiv \frac{m_{3/2}}{M_P} \simeq \frac{W_0}{\mathcal{V}} \simeq e^{-\frac{2\pi}{N_{g_s}}} \ll 1$

- 1. NO gravitino problem
- 2. CMP if $m_{3/2} \simeq \mathcal{O}(M_{\text{soft}}) \simeq \mathcal{O}(1)$ TeV $\Rightarrow m_{\phi} \simeq \mathcal{O}(1)$ MeV

Way-out: focus on sequestered models [Blumenhagen et al]:

1. Visible sector in the singular regime (fractional D3-branes at singularities)

$$M_{\rm soft} \simeq m_{3/2} \epsilon \ll m_{\phi} \simeq m_{3/2} \sqrt{\epsilon} \ll m_{3/2}$$

2. NO CMP for $\epsilon \simeq 10^{-7}$

 $\Rightarrow M_{\text{soft}} \simeq \mathcal{O}(1) \text{ TeV} \ll m_{\phi} \simeq \mathcal{O}(5 \cdot 10^6) \text{ GeV} \ll m_{3/2} \simeq \mathcal{O}(10^{11}) \text{ GeV}$

- 3. High string scale: $M_s \simeq M_P \sqrt{\epsilon} \simeq \mathcal{O}(10^{15})$ GeV
 - \Rightarrow good for GUTs and inflation

Reheating

• Reheating driven by ϕ decays when $H \sim \Gamma_{\phi} = \frac{c}{2\pi} \frac{m_{\phi}^3}{M_P^2}$

$$T_{\rm rh} = c^{1/2} \left(\frac{m_{\phi}}{5 \cdot 10^6 \,{\rm GeV}} \right)^{3/2} \, \mathcal{O}(1) \,{\rm GeV}$$

Leading decay channels:

■ Higgses: $c_{\phi \to H_u H_d} = Z^2/12$ from GM term $K \supset Z \frac{H_u H_d}{2V^{2/3}}$

• Bulk closed string axions: $c_{\phi \rightarrow a_b a_b} = 1/24$

▶ Local closed string axions (if not eaten by U(1)s): $c_{\phi \to a_{loc}a_{loc}} = 9/384$

Subleading decay channels:

- Gauge bosons: $c_{\phi \to A^{\mu} A^{\mu}} = \lambda \frac{\alpha_{\rm vs}^2}{8\pi} \ll 1$
- Other visible sector fields: $c_{\phi \to \psi \psi} \simeq \left(\frac{M_{\text{soft}}}{m_{\phi}}\right)^2 \simeq \frac{1}{\mathcal{V}} \ll 1$
- Local open string axions: $c_{\phi \to a_b \theta} \simeq \left(\frac{M_s}{M_P}\right)^4 \tau_{\text{sing}}^2 \simeq \left(\frac{\tau_{\text{sing}}}{\mathcal{V}}\right)^2 \ll 1$

Predictions for dark radiation

Prediction for ΔN_{eff} for n_H Higgs doublets and n_a local closed string axions:

$$\Delta N_{\text{eff}} = \frac{3.48}{n_H Z^2} \left(1 + \frac{9n_a}{16} \right) \xrightarrow[n_a=0]{} \frac{3.48}{n_H Z^2}$$

Axions in sequestered models

- In LVS \mathcal{V} fixed by perturbative effects \Rightarrow light a_b because of shift symmetry
- Open string axions eaten up by anomalous U(1)s on bulk cycles
 ⇒ light bulk closed string axions are a model-independent feature of LVS
 ⇒ dark radiation is a model-independent prediction of LVS!
- $\mathcal{O}(200) \, \mathrm{eV}$ cosmic axion background + X-ray excess in galaxy cluster [Conlon, Marsh]
- Two options for QCD axion [MC,Goodsell,Ringwald]:
 - **9** Open string QCD axion θ : $C = \rho e^{i\theta}$
 - 1. Subleading ϕ decay to $\theta \Rightarrow$ No DR overproduction
 - 2. D-terms: $V_D \simeq g^2 \left(\rho^2 \xi\right)^2 \Rightarrow f_a = \langle \rho \rangle = \sqrt{\xi} \simeq \sqrt{\langle \tau_{\text{sing}} \rangle} M_s$
 - 3. Subleading F-terms: $\langle \tau_{\text{sing}} \rangle = 1/\mathcal{V} \ll 1$ $\Rightarrow f_a \simeq M_s / \sqrt{\mathcal{V}} \simeq \mathcal{O}(10^{11-12}) \text{ GeV} \Rightarrow \text{No DM overproduction}$
 - **Solution** Closed string QCD axion a_{sing} : $T_{sing} = \tau_{sing} + ia_{sing}$
 - 1. All local closed string axions eaten up by anomalous U(1) in dP singularities
 - 2. a_{sing} could be left over for more complicated singularities

3.
$$f_{a_{
m sing}} \simeq M_s/\sqrt{4\pi} \simeq 10^{14}~{
m GeV}$$

- 4. Needs to be diluted by ϕ decay or tune initial misalignment angle
- 5. $a_{\rm sing}$ could give DR overproduction

Non-thermal dark matter from ϕ decay

- Non-thermal DM produced from ϕ decay [Allahverdi, MC, Dutta, Sinha]
- $\checkmark \phi$ decay dilutes thermal DM by a factor of order $(T_{
 m f}/T_{
 m rh})^3\gtrsim 10^6$
- Parameter space larger than the one for thermal DM
- **DM** production from ϕ decay:

$$\frac{n_{\rm DM}}{s} = \min\left[\left(\frac{n_{\rm DM}}{s}\right)_{\rm obs} \frac{\langle\sigma_{\rm ann}v\rangle_{\rm f}^{\rm th}}{\langle\sigma_{\rm ann}v\rangle_{\rm f}} \left(\frac{T_{\rm f}}{T_{\rm rh}}\right), Y_{\phi} {\rm Br}_{\phi \to {\rm DM}}\right]$$

where:

• $\langle \sigma_{\rm ann} v \rangle_{\rm f}^{\rm th} \simeq 3 \times 10^{-26} {\rm cm}^3 \, {\rm s}^{-1}$ is the thermal value

• $\operatorname{Br}_{\phi \to DM}$ is the branching ratio for ϕ decays into *R*-parity odd particles

Non-thermal DM scenarios

DM abundance:

$$\frac{n_{\rm DM}}{s} = \min\left[\left(\frac{n_{\rm DM}}{s}\right)_{\rm obs} \frac{\langle\sigma_{\rm ann}v\rangle_{\rm f}^{\rm th}}{\langle\sigma_{\rm ann}v\rangle_{\rm f}} \left(\frac{T_{\rm f}}{T_{\rm rh}}\right), Y_{\phi} \mathrm{Br}_{\phi \to \mathrm{DM}}\right]$$

First term on RHS side \Rightarrow Annihilation Scenario

1. DM produced from ϕ decay undergo some annihilation

2. Need
$$\langle \sigma_{\rm ann} v \rangle_{\rm f} = \langle \sigma_{\rm ann} v \rangle_{\rm f}^{\rm th} (T_{\rm f}/T_{\rm rh})$$

- 3. Since $T_{\rm rh} < T_{\rm f}$, need $\langle \sigma_{\rm ann} v \rangle_{\rm f} > \langle \sigma_{\rm ann} v \rangle_{\rm f}^{\rm th} \Rightarrow$ Wino/Higgsino DM
- Second term on RHS side \Rightarrow Branching Scenario
 - 1. DM annihilation is inefficient and DM is produced directly from ϕ decay
 - 2. Need $\langle \sigma_{\rm ann} v \rangle_{\rm f} < \langle \sigma_{\rm ann} v \rangle_{\rm f}^{\rm th} (T_{\rm f}/T_{\rm rh})$
 - 3. Always the case for $\langle \sigma_{\rm ann} v \rangle_{\rm f} < \langle \sigma_{\rm ann} v \rangle_{\rm f}^{\rm th} \Rightarrow {\sf Bino DM}$
 - 4. Can also happen for $\langle \sigma_{\rm ann} v \rangle_{\rm f} > \langle \sigma_{\rm ann} v \rangle_{\rm f}^{\rm th}$ if $T_{\rm rh}/T_{\rm f}$ is too small \Rightarrow can accommodate also Wino/Higgsino DM

Annihilation Scenario

FERMI bounds from dwarf spheroidal galaxies [Geringer-Sameth, Koushiappas]:

- For $m_{\rm DM} < 40 \,{\rm GeV}$, $\langle \sigma_{\rm ann} v \rangle_{\rm f} < \langle \sigma_{\rm ann} v \rangle_{\rm f}^{\rm th} \Rightarrow$ No 'annihilation scenario'
- For $m_{\rm DM} > 40 \,{\rm GeV}$, $T_{\rm f}/30 \lesssim T_{\rm rh} < T_{\rm f}$ \Rightarrow $T_{\rm rh} \gtrsim 70 \,{\rm MeV}$

Two cases:

- 1. QCD axion is an open string mode θ with $f_a \simeq 10^{11-12} \text{ GeV}$
 - Subleading ϕ decays to $\theta \Rightarrow$ No DR is produced
 - DR from ϕ decays to bulk closed string axions \Rightarrow suppress $\Delta N_{\rm eff} \simeq 1.74/Z^2$
 - $\Delta N_{\rm eff} \simeq 0.5 \Rightarrow Z \simeq 1.8 \Rightarrow T_{\rm rh} \simeq \mathcal{O}(1) \; {\rm GeV}$
 - $T_{\rm rh} > \Lambda_{\rm QCD} \Rightarrow$ axion DM is not diluted
 - Multicomponent DM (Wino/Higgsino + open string axions)
- 2. QCD axion is a local closed string mode $a_{\rm loc}$ with $f_a \simeq 10^{14} {\rm ~GeV}$
 - $\phi \to a_{\rm loc} a_{\rm loc}$ is a leading decay channel \Rightarrow suppress $\Delta N_{\rm eff} \simeq 2.72/Z^2$

 - Axion DM is not diluted \Rightarrow tune initial misalignment angle
 - Multicomponent DM (Wino/Higgsino + closed string axions)

Branching Scenario

- **D** Low $T_{\rm rh}$ regime: $3 \,{
 m MeV} \lesssim T_{\rm rh} \lesssim 70 \,{
 m MeV}$
- Need very small ϕ decay width
- $D Z \simeq 2 \text{ to avoid DR problems} \Rightarrow T_{\rm rh} \simeq \mathcal{O}(1) \, \text{GeV}$
- **Solution** Cannot lower $T_{\rm rh}$ if Z = 0 from loop-suppressed ϕ decays to gauge bosons
- $\textbf{D} \quad \text{Lower } T_{\rm rh} \text{ for smaller values of } m_{\phi} \Rightarrow M_{\rm soft} \ll \mathcal{O}(1) \, {\rm TeV}$
- No DR overproduction + TeV-scale SUSY forbid branching scenario
- Rule out models with Bino LSP \Rightarrow non-thermal DM overproduction
- Way-out: focus on cases where the LSP is unstable
- DM is QCD axion

Conclusions

- Sequestered LVS models
- Superpartner spectrum in the TeV range
- High string scale $M_s \simeq 10^{15} \, \mathrm{GeV} \Rightarrow$ Good inflationary scenarios
- No CMP and no gravitino problem since $m_{3/2} \simeq 10^{11} \, {
 m GeV} \gg m_{\phi} \simeq 5 \times 10^6 \, {
 m GeV}$
- Schedule Reheating driven from ϕ decay with $T_{\rm rh} \simeq \mathcal{O}(1) \, {\rm GeV}$
- Seneric dark radiation production from ϕ decay to light bulk closed string axions
- Non-thermal DM from ϕ decay which increases DM parameter space
- Annihilation scenario' with multicomponent DM: Wino/Higgsino + QCD axion
- Two options for QCD axion:
 - Solution String QCD axion with $f_a \simeq 10^{11-12} \, \text{GeV}$ ⇒ No extra DR contribution + no DM overproduction
 - Closed string QCD axion with $f_a \simeq 10^{14} \, \text{GeV}$
 - \Rightarrow Extra DR contribution + tune initial misalignment angle

No 'Branching scenario' with $T_{\rm rh} \simeq 10 \, {\rm MeV}$ due to DR + TeV-scale SUSY constraints \Rightarrow rule out models with stable Bino-like LSP