Extended no-scale and ${\alpha'}^2$ corrections to the IIB action

[arXiv: 1306.1237]

Francisco Gil Pedro

in collaboration with: Markus Rummel and Alexander Westphal

<u>Outline</u>:

Motivation:

String theory as a unifying framework for GR and SM Extended spacetimes: D=10,11,12

Motivation:

String theory as a unifying framework for GR and SM Extended spacetimes: D=10,11,12 Many scalar degrees of freedom: Kahler >> size Complex structure >> shape Dilaton >> string coupling

Motivation:

String theory as a unifying framework for GR and SM Extended spacetimes: D=10,11,12 Many scalar degrees of freedom: Kahler >> size Complex structure >> shape Dilaton >> string coupling

Realistic phenomenology requires moduli stabilisation

Leading Order

Theory determined by Kahler potential and superpotential $K_{tree} = K(T) + K(S) + K(U)$ $W_{tree} = W(S, U)$

Francisco Gil Pedro, Trieste, 29 August 2013

[GKP:2001]

Leading Order [GKP:2001] Theory determined by Kahler potential and superpotential

 $K_{tree} = K(T) + K(S) + K(U) \qquad \qquad W_{tree} = W(S, U)$

SUSY stabilisation of dilaton and c.s. by fluxes: DW = 0

Leading Order[GKP:2001]Theory determined by Kahler potential and superpotential $K_{tree} = K(T) + K(S) + K(U)$ $W_{tree} = W(S, U)$

SUSY stabilisation of dilaton and c.s. by fluxes: DW = 0Scalar potential for Kahler moduli:

$$V_K = \frac{1}{\mathcal{V}^2} \left(K_a K^{ab} K_b - 3 \right) |W_0|^2$$

Leading Order [GKP:2001]

Theory determined by Kahler potential and superpotential $K_{tree} = K(T) + K(S) + K(U)$ $W_{tree} = W(S, U)$

SUSY stabilisation of dilaton and c.s. by fluxes: DW = 0Scalar potential for Kahler moduli:

$$V_K = \frac{1}{\mathcal{V}^2} \left(K_a K^{ab} K_b - 3 \right) |W_0|^2 \\ K_i^0 K_0^{ij} K_j^0 = 3.$$

Leading Order[GKP:2001]Theory determined by Kahler potential and superpotential $K_{tree} = K(T) + K(S) + K(U)$ $W_{tree} = W(S, U)$

SUSY stabilisation of dilaton and c.s. by fluxes: DW = 0Scalar potential for Kahler moduli:

$$V_{K} = \frac{1}{\mathcal{V}^{2}} \left(K_{a} K^{ab} K_{b} - 3 \right) |W_{0}|^{2} \longrightarrow 0$$
$$K_{i}^{0} K_{0}^{ij} K_{j}^{0} = 3.$$

Leading Order[GKP:2001]Theory determined by Kahler potential and superpotential $K_{tree} = K(T) + K(S) + K(U)$ $W_{tree} = W(S, U)$

SUSY stabilisation of dilaton and c.s. by fluxes: DW = 0Scalar potential for Kahler moduli:

$$V_{K} = \frac{1}{\mathcal{V}^{2}} \left(K_{a} K^{ab} K_{b} - 3 \right) |W_{0}|^{2} \longrightarrow 0$$
$$K_{i}^{0} K_{0}^{ij} K_{j}^{0} = 3.$$

Kahler moduli are flat directions

T-moduli lifted by higher order corrections to K and W

T-moduli <u>lifted</u> by higher order corrections to K and W Assume

T-moduli <u>lifted</u> by higher order corrections to K and W Assume

$K = K_0 + \delta K$ and $W = W_0 + \delta W$

T-moduli <u>lifted</u> by higher order corrections to K and W Assume

$K = K_0 + \delta K$ and $W = W_0 + \delta W$

then

 $V = V_{(0,0)} + \delta V_{(1,0)} + \delta V_{(0,1)} + \delta V_{(1,1)} + \delta V_{(2,0)} + \delta V_{(0,2)} + \delta V_{(2,1)} + \dots$

T-moduli <u>lifted</u> by higher order corrections to K and W Assume

$$K = K_0 + \delta K$$
 and $W = W_0 + \delta W$

then

$V = V_{(0,0)} + \delta V_{(1,0)} + \delta V_{(0,1)} + \delta V_{(1,1)} + \delta V_{(2,0)} + \delta V_{(0,2)} + \delta V_{(2,1)} + \dots$ \downarrow 0 no-scale cancellation

T-moduli <u>lifted</u> by higher order corrections to K and W Assume

$$K = K_0 + \delta K \quad \text{and} \quad W = W_0 + \delta W$$

then
$$T = V_{(0,0)} + \delta V_{(1,0)} + \delta V_{(0,1)} + \delta V_{(1,1)} + \delta V_{(2,0)} + \delta V_{(0,2)} + \delta V_{(2,1)} + \dots$$

$$\downarrow$$

0 no-scale cancellation

T-moduli <u>lifted</u> by higher order corrections to K and W Assume

$\delta K = 0 \qquad \delta W \sim e^{-T}$

Francisco Gil Pedro, Trieste, 29 August 2013

[KKLT:2003]

 $\delta K = 0 \qquad \delta W \sim e^{-T}$

$$V_{KKLT} \sim \frac{aA^2 e^{-2a\tau}}{\tau^2} + \frac{aA e^{-a\tau} W_0}{\tau^2} + \frac{6a^2 A^2 e^{-2a\tau}}{\tau}$$

Francisco Gil Pedro, Trieste, 29 August 2013

[KKLT:2003]

 $\delta K = 0 \qquad \delta W \sim e^{-T}$

[KKLT:2003]

 $\delta K = 0 \qquad \delta W \sim e^{-T}$

DESY

[KKLT:2003]

Large Volume Scenario

AdS minimum with broken SUSY at

 $\langle \tau_s \rangle \propto rac{1}{g_s}$

Francisco Gil Pedro, Trieste, 29 August 2013

 $\langle \mathcal{V} \rangle \propto e^{1/g_s}$

Large Volume Scenario

Large Volume Scenario

How will other terms in K affect moduli stabilisation?

[von Gersdorff&Hebecker,2005] [Berg,Haack&Kors,2005] [Cicoli,Conlon&Quevedo,2007/08]

 $K = K_0 + \delta K$

$$\delta V_{(1,0)} = -\frac{|W_0|^2}{\mathcal{V}^2} \left\{ 2\tau_b \delta K_b + \tau_m \delta K_{mn} \tau_n \right\}$$

[von Gersdorff&Hebecker,2005] [Berg,Haack&Kors,2005] [Cicoli,Conlon&Quevedo,2007/08]

 $K = K_0 + \delta K$

$$\delta V_{(1,0)} = -\frac{|W_0|^2}{\mathcal{V}^2} \left\{ 2\tau_b \delta K_b + \tau_m \delta K_{mn} \tau_n \right\}.$$

homogeneous function of degree n:

 $t^a \frac{\partial \delta K}{\partial t^a} = n \delta K,$

[von Gersdorff&Hebecker,2005] [Berg,Haack&Kors,2005] [Cicoli,Conlon&Quevedo,2007/08]

 $K = K_0 + \delta K$

$$\delta V_{(1,0)} = -\frac{|W_0|^2}{\mathcal{V}^2} \left\{ 2\tau_b \delta K_b + \tau_m \delta K_{mn} \tau_n \right\}.$$

homogeneous function of degree n:

$$t^a \frac{\partial \delta K}{\partial t^a} = n \delta K,$$

$$\delta V_{(1,0)} = -\frac{|W_0|^2}{4\mathcal{V}^2}n(n+2)\delta K.$$

[von Gersdorff&Hebecker,2005] [Berg,Haack&Kors,2005] [Cicoli,Conlon&Quevedo,2007/08]

 $K = K_0 + \delta K$

$$\delta V_{(1,0)} = -\frac{|W_0|^2}{\mathcal{V}^2} \left\{ 2\tau_b \delta K_b + \tau_m \delta K_{mn} \tau_n \right\}.$$

homogeneous function of degree n:

$$t^a \frac{\partial \delta K}{\partial t^a} = n \delta K,$$

Extended no-scale

$$\delta V_{(1,0)} = -\frac{|W_0|^2}{4\mathcal{V}^2}n(n+2)\delta K.$$

 $\rightarrow 0$ n=2

[von Gersdorff&Hebecker,2005] [Berg,Haack&Kors,2005] [Cicoli,Conlon&Quevedo,2007/08]

 $K = K_0 + \delta K$

$$\delta V_{(1,0)} = -\frac{|W_0|^2}{\mathcal{V}^2} \left\{ 2\tau_b \delta K_b + \tau_m \delta K_{mn} \tau_n \right\}.$$

homogeneous function of degree n:

$$t^a \frac{\partial \delta K}{\partial t^a} = n \delta K,$$

Extended no-scale

n=2

$$\delta V_{(1,0)} = -\frac{|W_0|^2}{4\mathcal{V}^2}n(n+2)\delta K. \longrightarrow 0$$

String loop corrections

[Grimm,Savelli&Weissenbacher:2013]

Quantum correction to the volume at order ${\alpha'}^2$

 $\tilde{\mathcal{V}} = \mathcal{V} - \frac{5}{64} \mathcal{V}_{D7 \cap O7}$

[Grimm,Savelli&Weissenbacher:2013]

Quantum correction to the volume at order ${\alpha'}^2$

$$\tilde{\mathcal{V}} = \mathcal{V} - \frac{5}{64} \mathcal{V}_{D7 \cap O7}$$
$$D_{7 \cap O7} = 8 \int_{X_3} c_1 (B_3)^2 \wedge J_b$$

[Grimm,Savelli&Weissenbacher:2013]

Quantum correction to the volume at order ${\alpha'}^2$

$$\tilde{\mathcal{V}} = \mathcal{V} - \frac{5}{64} \mathcal{V}_{D7 \cap O7}$$

$$\mathcal{V}_{D7\cap O7} = 8 \int_{X_3} c_1 (B_3)^2 \wedge J_b$$

$$\delta K \sim \frac{\delta \mathcal{V}}{\mathcal{V}} \sim \frac{1}{\tau} \sim \frac{1}{t^2}$$

[Grimm,Savelli&Weissenbacher:2013]

Quantum correction to the volume at order ${\alpha'}^2$

$$\tilde{\mathcal{V}} = \mathcal{V} - \frac{5}{64} \mathcal{V}_{D7 \cap O7}$$

$$\mathcal{V}_{D7\cap O7} = 8 \int_{X_3} c_1 (B_3)^2 \wedge J_b$$

$$\sim \sqrt{\tau}$$

Tree level in g_s
Determined by geometry
Obeys Extended no-scale

[Grimm,Savelli&Weissenbacher:2013]

Quantum correction to the volume at order ${\alpha'}^2$

$$\tilde{\mathcal{V}} = \mathcal{V} - \frac{5}{64} \mathcal{V}_{D7 \cap O7}$$

$$\mathcal{V}_{D7\cap O7} = 8 \int_{X_3} c_1 (B_3)^2 \wedge J_b$$

$$\sim \sqrt{\tau}$$

Tree level in g_s
Determined by geometry
Obeys Extended no-scale

Effect on moduli stabilisation?

 $K = -2\log[\mathcal{V} + \delta\mathcal{V}]$

$$K = -2\log[\mathcal{V} + \delta\mathcal{V}]$$

Simplest case: $\mathcal{V} \sim T^{3/2} \qquad \delta \mathcal{V} \sim \sqrt{T}$

$$K = -2\log[\mathcal{V} + \delta\mathcal{V}]$$

Simplest case:
$$\mathcal{V} \sim T^{3/2} \qquad \delta \mathcal{V} \sim \sqrt{T}$$

$$\delta V = -\frac{675k^4}{64}\frac{W_0^2}{\tau^5} + 45k^2\frac{A^2ae^{-2a\tau}}{\tau^3} + 45k^2\frac{W_0Aae^{-a\tau}}{\tau^3} + 15k^2\frac{A^2a^2e^{-2a\tau}}{2\tau^2}$$

$$K = -2\log[\mathcal{V} + \delta\mathcal{V}]$$

Simplest case:
$$\mathcal{V} \sim T^{3/2} \qquad \delta \mathcal{V} \sim \sqrt{T}$$

$$\Delta = \langle \delta V / V_{KKLT} \rangle$$

KKLT stability

Example: $\mathbb{CP}_{11114}^4[8]$ [Grimm,Savelli&Weissenbacher:2013] $K = -\log\left[\frac{2}{9}\tau\left(\tau - \frac{15}{8}k^2\right)^2\right] \qquad k = 4$

Example: $\mathbb{CP}_{11114}^4[8]$ [Grimm,Savelli&Weissenbacher:2013] $K = -\log\left[\frac{2}{9}\tau\left(\tau - \frac{15}{8}k^2\right)^2\right] \qquad k = 4$

Δ	$\langle \tau \rangle$	W_0
1	60	-10^{-3}
1/10	600	-10^{-25}
1/100	6000	-10^{-258}

LVS stability

LVS on $\mathbb{CP}^4_{11169}[18]$:

 $\mathcal{V} = \frac{1}{18}\tau_1^{3/2} - \frac{1}{9}\sqrt{2}\tau_2^{3/2}$

 $\mathcal{V}_{O7\cap D7} = \frac{135}{8}\sqrt{\tau_1}$

New terms in V:

$$\delta V_{(1,0)} + \delta V_{(2,0)} = -\frac{18225}{16} \left(\frac{3}{2}\right)^{1/3} \frac{W_0^2}{\mathcal{V}^{10/3}}$$

LVS stability

LVS on $\mathbb{CP}^4_{11169}[18]$:

 $\mathcal{V} = \frac{1}{18}\tau_1^{3/2} - \frac{1}{9}\sqrt{2}\tau_2^{3/2}$

 $\mathcal{V}_{O7\cap D7} = \frac{135}{8}\sqrt{\tau_1}$

New terms in V:

$$\delta V_{(1,0)} + \delta V_{(2,0)} = -\frac{18225}{16} \left(\frac{3}{2}\right)^{1/3} \frac{W_0^2}{\mathcal{V}^{10/3}}$$

LVS stability

LVS on $\mathbb{CP}^4_{11169}[18]$:

$$\mathcal{V} = \frac{1}{18}\tau_1^{3/2} - \frac{1}{9}\sqrt{2}\tau_2^{3/2}$$

 $\mathcal{V}_{O7\cap D7} = \frac{135}{8}\sqrt{\tau_1}$

New terms in V:

$$\delta V_{(1,0)} + \delta V_{(2,0)} = -\frac{18225}{16} \left(\frac{3}{2}\right)^{1/3} \frac{W_0^2}{\mathcal{V}^{10/3}}$$

Compare to

$$\langle V_{LVS} \rangle \sim -\frac{\sqrt{\log \langle \mathcal{V} \rangle}}{6\sqrt{2} a^{3/2} \langle \mathcal{V} \rangle^3} |W_0|^2$$

DESY

$g_s {\alpha'}^2$ correction to LVS

Require $\Delta \equiv \delta V/V_{LVS}$ to be small

 $g_s {\alpha'}^2$ correction to LVS

Require $\Delta \equiv \delta V / V_{LVS}$ to be small

$$\langle \mathcal{V} \rangle \gtrsim 3 \times 10^{14} \times \left(\frac{a}{2\pi}\right)^{9/2} \Delta^{-3}$$

 $g_s {\alpha'}^2$ correction to LVS

Require $\Delta \equiv \delta V / V_{LVS}$ to be small

$$\langle \mathcal{V} \rangle \gtrsim 3 \times 10^{14} \times \left(\frac{a}{2\pi}\right)^{9/2} \Delta^{-3}$$

$g_s {\alpha'}^2$ correction to LVS

Require $\Delta \equiv \delta V/V_{LVS}$ to be small

$$\langle \mathcal{V} \rangle \gtrsim 3 \times 10^{14} \times \left(\frac{a}{2\pi}\right)^{9/2} \Delta^{-3}$$

<u>LVS vacuum only safe</u> <u>@ very large volumes:</u>

Tree level effect
 Large numerical coeffs.

We have shown that:

Explored stability of KKLT and LVS moduli stabilisation,
 Large coeffs. & no g_s suppression,
 Safety can be achieved @ large volumes,
 Impacts on KKLT/LVS phenomenology,

