Grand Unification Thresholds and the NMSGUT

Charanjit S. Aulakh, Ila Garg, Charanjit K. Khosa

Department of Physics Panjab University Chandigarh, India, 160014.

- SO(10) MSGUT Virtues and Development Review
- GUT Threshold effects on Fermion Yukawas : Fixing d = 5 rates
- RG Features of Distinctive Spectra
- New Horizons : Grand Yukawonifcation

arXiv[hep-ph]1308.5665, Aug. 26 2013 (with Charanjit K. Khosa) :

• • = • •

• $\{Q_L, L_L, u_L^c, d_L^c, l_L^c \oplus \nu_L^c\} \equiv 16$: Tight and complete Q-L unification

• Simple Tri-band FM Higgs Channel Spectrum: \Rightarrow (10 + 120 + $\overline{126}$)

$$\overline{126} = (15,2,2) + \Delta_R(10,1,3) + \Delta_L(\overline{10},3,1) + (6,1,1)$$

NATURAL HOME TO BOTH SEESAWS :

• Type I : $M_{B-L} \sim < \vec{\Delta}_R >_{SM=0} \Rightarrow M_{\nu^c} \Rightarrow M_{\nu}^I \sim \frac{y_{\nu}^2 v^2}{M_{B-L}}$

• Type II :
$$\frac{v_W^2}{M_{B-L}} \sim < \vec{\Delta}_L >_{Y=2, T_{3L}=-1} \Rightarrow \Rightarrow M_{\nu}^{II} \sim f < \vec{\Delta}_L >$$

• $\vec{\Delta}_R(1,3,-2), \vec{\Delta}_L(3,1,2) \subset \overline{126}$ PRESERVE R_p : $M_p = (-)^{3(B-L)} \subset U(1)_{B-L} \subset SO(10) \oplus \langle \Delta_{L,R} \rangle \Rightarrow R_p, \Rightarrow$ Stable LSP, Ideal CDM !

• "New" Minimal Susy GUT (NMSGUT): Oldest complete Susy SO(10) GUT!

(1982)CSA, Mohapatra, Clark Kuo, Nakagawa

- CTF/USP : Minimal parameters, fully realistic fermion spectra \Rightarrow
- Distinctive MSSM spectra (2008) :
 - Mini Split
 - Large A-terms
 - Light smuons
 - Normal sHierarchy :Standout Falsifiable !

Futility vs Precision

 $\bullet\,\sim 10^3$ fields BUT controllable Threshold effects at GUT scales :

$$M_X \sim 10^{16.75} - 10^{18} ~GeV$$

- Large SO(10) gauge beta functions due to **210**, **126**, **126**, **120** \Rightarrow Landau pole just above $M_X \Rightarrow$ Physical cutoff Λ_X : Gauge Gravity unification ?
- Induced Gravity ? :

$$M_{Planck} \sim \Lambda_X$$

Higgs Structure

- AM Higgs : $< 210(\Phi_{ijkl}), \overline{126}(\overline{\Sigma}_{ijklm}) , 126 > \Rightarrow$ Susy SO(10) $\rightarrow MSSM$
- Superpotential

 $W = W_{MSGUT} + W_{120} + W_{16}$ $W_{MSGUT} = m 210^{2} + \lambda 210^{3} + M 126 \cdot \overline{126} + \eta 210 \cdot 126 \cdot \overline{126}$ $+ 10 \cdot 210(\gamma \ 126 + \overline{\gamma} \ \overline{126}) + M_{H} \ 10^{2}$ $W_{120} = M_{O} \ 120 \cdot 120 + k \ 10 \cdot 120 \cdot 210 + \rho \ 120 \cdot 120 \cdot 210$ $+ \zeta \ 120 \cdot 126 \cdot 210 + \overline{\zeta} \ 120 \cdot \overline{126} \cdot 210$ $W_{16} = h_{AB} \ 16_{A} \cdot 16_{B} + f'_{AB} \ 16_{A} 16_{B} + g_{[AB]} \ 16_{A} \cdot 16_{B} \cdot 120$

• MSGUT Parameters (one fine tuned) : (23)

NMSGUT 15 more \Rightarrow Total = 38 STILL MINIMAL !

• Calculable SSB at M_X : **GUT scale VEVS** : $SO(10) \rightarrow MSSM$

- Homogenous Degree 1 F-terms Σ, Σ equations ⇒ extra (D_{B-L} = 0) term condition : |σ| = |σ̄|
- F Terms : SSB completely analyzable 4 eqns \Rightarrow Cubic in $x = -\lambda \omega/m$

$$8x^{3} - 15x^{2} + 14x - 3 = -\xi(1 - x)^{2}$$
$$\xi = \frac{\lambda M}{\eta m}$$

Fields and Types

- MSGUT : 45+48+ 10+252+210=565 (super)Fields
- NMSGUT: 565+120= 685 fields
- 26 MSSM-irrep types
- GUT scale spectra and Threshold effects calculable

MSSM Higgs

• Multiple sources of Higgs Doublets only one pair light.

$$\begin{array}{l} [1,2,-1](\bar{h}_{1},\bar{h}_{2},\bar{h}_{3},\bar{h}_{4}) \oplus [1,2,1](h_{1},h_{2},h_{3},h_{4}) \\ (H_{2}^{\alpha},\overline{\Sigma}_{2}^{(15)\alpha},\Sigma_{2}^{(15)\alpha},\frac{\phi_{44}^{2\alpha}}{\sqrt{2}}) \oplus (H_{\alpha\dot{1}},\overline{\Sigma}_{\alpha\dot{1}}^{(15)},\Sigma_{\alpha\dot{1}}^{(15)},\frac{\phi_{\alpha}^{44\dot{1}}}{\sqrt{2}}) \end{array}$$

• Doublet Mass Matrix in MSGUT :

$$\mathcal{H} = \begin{pmatrix} -M_H & +\overline{\gamma}\sqrt{3}(\omega-a) & -\gamma\sqrt{3}(\omega+a) & -\overline{\gamma}\overline{\sigma} \\ -\overline{\gamma}\sqrt{3}(\omega+a) & 0 & -(2M+4\eta(a+\omega)) & 0 \\ \gamma\sqrt{3}(\omega-a) & -(2M+4\eta(a-\omega)) & 0 & -2\eta\overline{\sigma}\sqrt{3} \\ -\sigma\gamma & -2\eta\sigma\sqrt{3} & 0 & -2m+6\lambda(\omega-a) \end{pmatrix}$$

• Fine Tuning : $Det \mathcal{H} = 0$

Left and Right Null eigenvectors determine Higgs Fractions

3

Fermion data fits

- SO(10) $t b \tau$ unification as striking as gauge unification !
- Supports third generation as real core of fermion hierarchy.
- Convincing only if single 10-plet dominates Requires

$$aneta \sim 45-60 \sim m_t/m_b$$

- MSGUT fails to produce adequate neutrino masses :
 - Type I >> Type II
 - $m_{
 u} >> Type I$
 - Because M_{ν}^{c} ($\overline{126}$ yukawa !) too large.
- NMSGUT Higgs Role reassignment :
 - $h \oplus g >> f \Rightarrow$ Charged fermion data : $(m_{q,l}, \theta_q^i, \delta_c)$.
 - $f \ll h, g \Rightarrow$ Type I boosted

▲□▶ ▲□▶ ▲□▶ ▲□▶ = ののの

TENSIONS and Calmatives

• 10 \oplus 120 only for Charged fermion fit \Rightarrow TENSIONS :

- $m_{d,s}^{MSSM}(M_Z) \sim m_{d,s}^{SM}(M_Z)/5$
- Tree Level: $m_s m_\mu = m_b m_ au$
- $\tan \beta$ driven threshold corrections to lower $y_{d,s}^{MSSM}$ while preserving or raising y_b Necessary for fermion fit !
- Lowering via gluino corrections. Preservation via $\ominus A_t vs \oplus \mu$ cancellation.
- Implies
 - $A_0 < 0, \mu \sim 10^2 \, TeV$
 - $m_0 \sim 10 \, TeV >> M_i \sim TeV$
 - Mini-Split necessary for fermion Fit !

・ 何 ト ・ ヨ ト ・ ヨ ト

Fits Achieved

Normal SHierarchy :

 $m_{\tilde{q}_3, \tilde{l}_3} >> m_{\tilde{q}_{1,2}, \tilde{l}_{1,2}}$

- Light smuons $(m_{ ilde{\mu}} \sim m_{\chi^0})$ \Rightarrow : Favorable
- \bullet DM Co-annihilation \surd
- $a_{\mu}\sqrt{}$.
- $B \rightarrow \mu\mu, b \rightarrow s\gamma, \Delta\rho, \epsilon_{Lept}$ all in right ballpark.
- Excellent Fits achieved (2008) : compatible with

$$M_H \sim 126 GeV <<< m_A \sim \mu \sim 10^2 \, TeV$$

- 31

Transitory Glee

• Short lived (satisfaction) : Generic Catastrophic proton decay

 $au_p^{d=5} \sim 10^{28}$ years

Fit	$\tau_p(M^+\nu)$	$\Gamma(p o \pi^+ u)$	${\it BR}(ho o \pi^+ u_{m{e},\mu, au})$
<i>Ex</i> .1	$8.1 imes10^{28}$	$3.1 imes10^{-30}$	$\{2.6 imes 10^{-5}, 0.09, 0.91\}$
<i>Ex</i> .2	$1.7 imes10^{28}$	$7.2 imes10^{-30}$	$\{3.04\times 10^{-5}, 0.014, 0.986\}$
		$\Gamma(p o K^+ u)$	${\it BR}(ho o K^+ u_{e,\mu, au})$
<i>Ex</i> .1		$9.2 imes10^{-30}$	$\{1.1 imes 10^{-4}, 0.27, 0.73\}$
<i>Ex</i> .2		$5.2 imes10^{-29}$	$\{5.45\times 10^{-5}, 0.01, 0.99\}$

Table of d = 5 operator mediated proton lifetimes $\tau_p(yrs)$, decay rates $\Gamma(yr^{-1})$ and branching ratios in the dominant Meson⁺ + ν channels.

- 31

GUT Threshold Effects on $Y_f^{MSSM} - Y_{SO(10)}$ matching

• Light matter and specially MSSM Higgs in Yukawa vertex suffer major finite wave function renormalization due to manifold circulating heavy fields

$$\Delta Z_{j}^{i} = \frac{g^{2}}{8\pi^{2}} \sum_{A,k} Q_{k}^{Ai} Q_{j}^{Ak} F(m_{A}, m_{k})$$

$$- \frac{1}{32\pi^{2}} \sum y_{ikl}^{*} y_{jkl} F(m_{k}, m_{l})$$

$$F(m_{A}, m_{B}) = \frac{1}{M_{A}^{2} - M_{B}^{2}} (M_{A}^{2} Ln \frac{m_{A}^{2}}{Q^{2}} - M_{B}^{2} Ln \frac{m_{B}^{2}}{Q^{2}}) - 1$$

$$F(m_{A}) = Ln \frac{m_{A}^{2}}{Q^{2}} - 1$$

$$Q = M_{X}^{0}$$

Redefinition to Canonical Kinetic terms

Diagonalize among multiple copies to get canonical kinetic terms

$$Y'_{f} = \frac{\tilde{U}_{fc}^{T} Y_{f} \tilde{U}_{f}}{\sqrt{Z_{H^{f}}}}$$
$$\tilde{U}_{\phi} = U_{\phi} \Lambda_{\phi}^{-\frac{1}{2}}$$

 26 MSSM multiplet types (and conjugates). PS decomposition of SO(10) gauge and Superpotential vertices allows calculation of MSSM decomposition.

- 4 同 6 4 日 6 4 日 6

Redefinition

- Multiple Higgs doublets in GUT descend to single Light pair.
- Each couples to 26 pairwise combinations with MSSM conjugate quantum numbers.
- E.g two fold $K[3, 1, -\frac{8}{3}]$ and 3-fold $\bar{X}[\bar{3}, 2, \frac{5}{3}] \sim [1, 2, -1]$ couple to H[1, 2, 1] and circulate in loop with multiplicity 3 ($Z_H = 1+3\Delta_{K\bar{X}}+..$)
- 1300 vertices : evaluate with correct relative signs to get $Z_{f,f^c,H}$

イロト 不得下 イヨト イヨト 二日

Home Safe

- Matter line corrections are generally small(max 30%).
- (Specially gauge) corrections on Higgs lines add up.
- Search for fermion fits at M_X with threshold corrected Yukawas and penalties on size of d = 5 B violation operator

$$C_{d=5}\sim rac{Y^2_{SO(10)}}{M_X}$$

- Parameter sets where $Z_H \rightarrow 0$ are selected for !
- SO(10) yukawas required to match MSSM are much smaller
- Same yukawas enter the LLLL and RRRR effective d = 5 B violation operators without Higgs external line.
- Lifetimes $au_p^{d=5} > 10^{34}$ years easily achieved !

Charanjit S. Aulakh (P.U. CHD.)

E 990

$\chi_X = 0.4234$	$\chi_Z = .0754$
$h_{11}3.3612 = imes 10^{-6}$	$h_{22} = 3.0910^{-4}$
$h_{33} = 0.0241$	$g_{12} = (0.13 + 0.13i)10^{-4}$
$g_{13} = (-9.26 + 6.87i)10^{-5}$	$g_{23} = -(3.2 + 1.4i)10^{-4}$
$\Delta_X = 0.74$	$\Delta_{G} = -23.5$
$\Delta \alpha_3(M_Z) = .0024$	
$M^{ u^c}(GeV) = \{7.79E8$,1.02 <i>E</i> 12,3.79 <i>E</i> 13}
aneta = 51.0	$R_{\frac{b\tau}{su}} = 0.0485$
$m_{\frac{1}{2}} = -180.6$	$m_0 = 6463.0$
$\mu \stackrel{\scriptscriptstyle 2}{=} 1.09 imes 10^5$	$\mathrm{B}=-8.59\times10^9$
$\mathrm{A}_0 = -1.36 imes 10^5$	
${ m M}_{ar{{ m H}}}^2=-8.61 imes 10^9$	${ m M}_{ m H}^2 = -7.72 imes 10^9$
$Max(L^{d=5} , R^{d=5})$	$8.28 imes 10^{-22} { m GeV^{-1}}$

Table : Fit : Values of the NMSGUT-SUGRY-NUHM parameters at M_X from anaccurate fit to 18 fermion data.

Charanjit S. Aulakh (P.U. CHD.)

August 30, 2013 18 / 30

Soft	Susy	parameters	at Mz
M_1	120.22	$M_{\tilde{\overline{u}}_{1,2}}$	8190.37
M_2	346.13	$M_{ ilde{u}_3}$	15617.44
M_3	500.05	$A_{11,22}^{0(l)}$	-80607.35
$M_{\tilde{l}_1}$	1314.07	$A_{33}^{0(1)}$	-48613.40
$M_{\tilde{l}_2}$	200.77	$A_{11,22}^{0(u)}$	-99127.34
$M_{\tilde{l}_3}$	12750.91	$A_{33}^{0(u)}$	-49080.19
$M_{\tilde{L}_{1,2}}$	8918.04	$A_{11,22}^{0(d)}$	-80820.34
$M_{\tilde{L}_3}$	12784.02	$A_{33}^{0(d)}$	-25953.43
$M_{\tilde{d}_{1,2}}^{2}$	4701.17	$M_{ ilde{Q}_{1,2}}$	6635.99
$M_{\tilde{d}_2}^{\tilde{l},\tilde{l}}$	34511.30	$\mu(M_Z)$	82076.07
$M_{\tilde{Q}_2}$	26677.45	$M_{ar{H}}^2$	-6.7041×10^9
$B(\tilde{M}_Z)$	$1.0886 imes10^9$	M_{H}^{2}	-7.4518×10^9

- 2

▲口> ▲圖> ▲屋> ▲屋>

Field	Mass(GeV)
$M_{\tilde{G}}$	500.05
$M_{\chi^{\pm}}$	346.13, 82076.16
M_{χ^0}	120.22, 346.13, 82076.13, 82076.13
$M_{\tilde{\nu}}$	8917.793, 8870.645, 12783.853
M _ẽ	1314.85, 8918.17, 200.57, 8871.15, 12483.32, 13045.62
M _ũ	6635.76, 8190.29, 6634.61, 8189.44, 15614.25, 26680.06
$M_{\tilde{d}}$	4701.24, 6636.27, 4699.43, 6635.15, 26670.33, 34516.86
M _A	235669.27
$M_{H^{\pm}}$	235669.28
M_{H^0}	235669.25
M_{h^0}	124.00

Table : Susy spectra ignoring generation mixing. Mini-split with large μ , A_0 parameters avoids FCNC and CCB/UFB. Masses ordered by generation not magnitude.

イロト イポト イヨト イヨト

Parameter	Value	
ϵ_{Lepto}	$0.35 imes10^{-7}$	
a_{μ}	$0.698 imes10^{-9}$	
δ_{PMNS} (in degrees)	6.2370	
$\tau(p \rightarrow Meson + \nu)$	5.233 * 10 ³⁴ yr	
$\Gamma(\pi\nu)$	$6.77 * 10^{-37} yr^{-1}$	
$\{BR(\pi\nu)\}$	$\{0.0045, 0.839, 0.1569\}$	
$\Gamma(K + \nu)$	$\{1.84 * 10^{-35} yr^{-1}$	
$BR(K + \nu)$	$\{0.00139, 0.335, 0.664\}$	

Table : B and Lepton violation parameters

э

3

Image: A math a math

æ

イロト イヨト イヨト イヨト

- 2

▲□▶ ▲圖▶ ▲厘▶ ▲厘≯

Figure : Right slepton masses

2

<ロ> (日) (日) (日) (日) (日)

Figure : Left slepton masses

3

<ロ> (日) (日) (日) (日) (日)

• Yukawonification : Gauge symmetry $SO(10) \times O(N_g)_F$

Superpotential

$$W_{GUT} = \operatorname{Tr}(m\Phi^{2} + \lambda\Phi^{3} + M\overline{\Sigma}.\Sigma + \eta\Phi.\overline{\Sigma}.\Sigma) + \Phi.H.(\gamma\Sigma + \overline{\gamma}.\overline{\Sigma}) + M_{H}H.H) W_{F} = \Psi_{A}.((hH) + (f\Sigma) + (g\Theta))_{AB}\Psi_{B}$$

SSB

$$W = \operatorname{Tr}[m(p^2 + 3a^2 + 6\omega^2) + 2\lambda(a^3 + 3p\omega^2 + 6a\omega^2)] + \operatorname{Tr}[M\bar{\sigma}\sigma + \eta(p + 3a - 6\omega)\frac{(\bar{\sigma}\sigma + \sigma\bar{\sigma})}{2}]$$

3

- **(())) (())) ())**

• Doublet Higgs $2N_g(N_g+1)$ dim mass matrix

$$\mathcal{H} = \begin{pmatrix} -M_H & \bar{\gamma}\sqrt{3}\Omega(\omega-a) & -\gamma\sqrt{3}\Omega(\omega+a) & -\bar{\gamma}\Omega(\bar{\sigma}) \\ \gamma\sqrt{3}\Omega(\omega-a) & -(2M+4\eta\Omega(a-\omega)) & \varnothing_d & -2\eta\sqrt{3}\Omega(\bar{\sigma}) \\ -\bar{\gamma}\sqrt{3}\Omega(\omega+a) & \varnothing_d & -(2M+4\eta\Omega(\omega+a)) & \varnothing_d \\ -\gamma\Omega(\sigma) & -2\eta\sqrt{3}\Omega(\sigma) & \varnothing_d & (-2m+6\lambda\Omega(\omega-a)) \end{pmatrix} \end{pmatrix}$$

$$\Omega[V] = \begin{pmatrix} V_{11} & 0 & V_{12}/\sqrt{2} \\ 0 & V_{22} & V_{12}/\sqrt{2} \\ V_{12}/\sqrt{2} & V_{12}/\sqrt{2} & (V_{11}+V_{22})/2 \end{pmatrix}$$

Charanjit S. Aulakh (P.U. CHD.)

3

・ロン ・四 ・ ・ ヨン ・ ヨン

• Yukawa couplings :

$$Y_{u} = \begin{pmatrix} \hat{h}\hat{V}_{1} + \hat{f}\hat{V}_{4} & \hat{h}\hat{V}_{3} + \hat{f}\hat{V}_{6} \\ \hat{h}\hat{V}_{3} + \hat{f}\hat{V}_{6} & \hat{h}\hat{V}_{2} + \hat{f}\hat{V}_{5} \end{pmatrix}$$

$$Y_{d} = \begin{pmatrix} \hat{h}\hat{W}_{1} + \hat{f}\hat{W}_{7} & \hat{h}\hat{W}_{3} + \hat{f}\hat{W}_{9} \\ \hat{h}\hat{W}_{3} + \hat{f}\hat{W}_{9} & \hat{h}\hat{W}_{2} + \hat{f}\hat{W}_{8} \end{pmatrix}$$

$$Y_{\nu} = Y_{u}|_{f \to -3f} ; \quad Y_{I} = Y_{d}|_{f \to -3f}$$

$$\hat{h} = 2\sqrt{2}h ; \qquad \hat{f} = -4i\sqrt{\frac{2}{3}}f$$

• \hat{V}, \hat{W} are the normalized right and left null eigenvectors of the mass matrix

• • • • • • • • • • • •

• GUT F terms

$$2m(p-a) - 2\lambda a^{2} + 2\lambda \omega^{2} = 0$$

$$2m(p+\omega) + \lambda(p+2a+3\omega)\omega$$

$$+\lambda\omega(p+2a+3\omega) = 0$$

$$M\sigma + \eta(\chi\sigma + \sigma\chi)/2 = 0$$

$$M\bar{\sigma} + \eta(\chi\bar{\sigma} + \bar{\sigma}\chi)/2 = 0$$

$$\bar{\sigma}\sigma + \sigma\bar{\sigma} = -\frac{4}{\eta}(mp+3\lambda\omega^{2}) \equiv F$$

where $\chi \equiv (p + 3a - 6\omega)$

• D-terms for $N_g = 2$

$$\begin{aligned} |\sigma_{11}|^2 + |\sigma_{22}|^2 + |\sigma_{12}|^2 &= |\bar{\sigma}_{11}|^2 + |\bar{\sigma}_{22}|^2 + |\bar{\sigma}_{12}|^2 \\ Re[\sigma_{12}^*(\sigma_{11} - \sigma_{22}) + \bar{\sigma}_{12}^*(\bar{\sigma}_{11} - \bar{\sigma}_{22}) + p_{12}^*(p_{11} - p_{22}) \\ + 3a_{12}^*(a_{11} - a_{22}) + 6\omega_{12}^*(\omega_{11} - \omega_{22})] &= 0 \end{aligned}$$

3

Conclusions

- Susy SO(10) GUTs fit fermion data, give LSP CDM, Leptogenesis, calculable LFV, Inflation...
- Complete GUT-SSB specific calculations carried out
- Spectra specific NMSGUT fits of complete fermion data, predicted(2008) Mini-Split large A₀, μ, m_A, m_{f̃}, m_h with controlled exotics.
- Require $A_0 < 0, \mu > 0$ driven modification of fermion yukawas at M_S
- d = 5 proton decay operators controllable by novel mechanism: Threshold lowering of SO(10) Yukawas required to match MSSM yukawas.
- Dynamical Yukawonification ! reduces number of parameters by over 50%
- Novel scenarios ? Re-evaluation of (N)MSGUT constraints and no go's.