Flavour GUT Models with $\theta_{13}^{\text{PMNS}} = \theta_C / \sqrt{2}$

Vinzenz Maurer

UNI BASEL

Universität Basel

30th August 2013

SUSY Conference 2013

Based on arXiv:1305.6612 and arXiv:1306.3984 In collaboration with Stefan Antusch, Christian Gross & Constantin Sluka

Vinzenz Maurer (Uni Basel) Flavour GUT Models with $\theta_{13}^{PMNS} = \theta_C / \sqrt{2}$ SUSY 2013 30th Aug. '13 1 / 13

until 2011 One of flavour model builders' favourites: Tri-bimaximal lepton mixing

$$\sin^2\theta_{12}^{\scriptscriptstyle \mathsf{PMNS}} = \frac{1}{3}, \ \sin^2\theta_{23}^{\scriptscriptstyle \mathsf{PMNS}} = \frac{1}{2}, \ \theta_{13}^{\scriptscriptstyle \mathsf{PMNS}} \approx 0^\circ$$

March 2012 Daya Bay: $\theta_{13}^{\text{PMNS}} = 8.8^{\circ} \pm 1.0^{\circ}$ Striking resemblence with $\theta_C/\sqrt{2} = 9.2^{\circ}$

Now Concrete models fulfilling these

Outline

Motivation

2 Models with $\theta_{13}^{\text{PMNS}} = \theta_C / \sqrt{2} \dots$

- ... and Normal Neutrino Mass Hierarchy
- ... and Inverse Neutrino Mass Hierarchy
- ... compared with each other

3 Summary and Conclusions

- SUSY + grand unification + flavour symmetry \rightarrow SU(5) \times A₄
- Conditions for $heta_{13}^{
 m PMNS}\simeq heta_C/\sqrt{2}$ [Antusch, Gross, V.M., Sluka '12]
 - $\theta_{13}^{\nu} \simeq \theta_{13}^{e} \simeq 0$
 - $\theta_{12}^e \simeq \theta_{12}^d$
 - $\theta_{12}^d \simeq \theta_C$
- Effective operators with $H_{24} \rightarrow$ Discrete SU(5)-breaking ratios

[Antusch, Spinrath '09]

• "Right-handed unitarity triangle" [Antusch, King, Malinsky, Spinrath '10]

$$\begin{split} \theta^{u}_{13} \simeq \theta^{d}_{13} \simeq \mathbf{0} \Rightarrow \theta^{d}_{12} = \mathbf{12}^{\circ} \\ \Rightarrow \alpha = \delta^{d}_{12} - \delta^{u}_{12} \end{split}$$

- Spontaneous CP violation
- Alignment ✓ Messengers ✓

- SUSY + grand unification + flavour symmetry \rightarrow SU(5) \times A₄
- Conditions for $heta_{13}^{
 m PMNS}\simeq heta_C/\sqrt{2}$ [Antusch, Gross, V.M., Sluka '12]
 - $\theta_{13}^{\nu} \simeq \theta_{13}^{e} \simeq 0$
 - $\theta_{12}^e \simeq \theta_{12}^d$
 - $\theta_{12}^d \simeq \theta_C$
- Effective operators with $H_{24} \rightarrow$ Discrete SU(5)-breaking ratios

[Antusch, Spinrath '09]

• "Right-handed unitarity triangle" [Antusch, King, Malinsky, Spinrath '10]

$$\begin{aligned} \theta^{u}_{13} \simeq \theta^{d}_{13} \simeq \mathbf{0} \Rightarrow \theta^{d}_{12} = \mathbf{12}^{\circ} \\ \Rightarrow \alpha = \delta^{d}_{12} - \delta^{u}_{12} \end{aligned}$$

- Spontaneous CP violation
- Alignment ✓ Messengers ✓

- SUSY + grand unification + flavour symmetry \rightarrow SU(5) \times A₄
- Conditions for $heta_{13}^{
 m PMNS}\simeq heta_C/\sqrt{2}$ [Antusch, Gross, V.M., Sluka '12]
 - $\theta_{13}^{\nu} \simeq \theta_{13}^{e} \simeq 0$
 - $\theta_{12}^e \simeq \theta_{12}^d$
 - $\theta_{12}^d \simeq \theta_C$
- Effective operators with $H_{24} \rightarrow$ Discrete SU(5)-breaking ratios

[Antusch, Spinrath '09]

• "Right-handed unitarity triangle" [Antusch, King, Malinsky, Spinrath '10]

$$\begin{aligned} \theta_{13}^{u} \simeq \theta_{13}^{d} \simeq \mathbf{0} \Rightarrow \theta_{12}^{d} = \mathbf{12}^{\circ} \\ \Rightarrow \alpha = \delta_{12}^{d} - \delta_{12}^{u} \end{aligned}$$

- Spontaneous CP violation
- Alignment ✓
 Messengers ✓

- Conditions for θ[!]
 - $\theta_{13}^{\nu}\simeq\theta_{13}^{e}\simeq0$
 - $\theta_{12}^e \simeq \theta_{12}^d$
 - $\theta_{12}^d \simeq \theta_C$
- Effective operate
- "Right-handed u

 $SU(5) \times A_4$

reaking ratios

[Antusch, Spinrath '09]

oinrath '10]

- Spontaneous CP violation
- Alignment ✓
 Messengers ✓

Normal Hierarchy Model: Quark & Ch. Lepton Sector

$$W_{Y_d} = [T_1 H_{\overline{45}}]_{45} [FH_{24}]_{\overline{45}} \phi_2 + [T_2 H_{24}]_{10} [FH_{\overline{5}}]_{\overline{10}} \phi_{ab} + [T_3 H_{\overline{5}}]_5 [FH_{24}]_{\overline{5}} \phi_3 + [T_3 H_{24}]_{10} [FH_{\overline{5}}]_{\overline{10}} \chi \phi_2 W_{Y_u} = H_5 (T_3^2 + T_2^2 \phi_{ab}^2 + T_1^2 (\phi_2^2)^2 + T_2 T_3 \xi_{23} + T_1 T_2 \xi_{12}^5)$$

flavon:	ϕ_2	ϕ_3	ϕ_{ab}	ξ12	ξ23	$\chi \sim 1'$
VEV:	$\epsilon_2 \begin{pmatrix} 0\\1\\0 \end{pmatrix}$	$\epsilon_3 \begin{pmatrix} 0\\0\\1 \end{pmatrix}$	$\epsilon_{ab} \begin{pmatrix} \cos \theta_{ab} \\ -i \sin \theta_{ab} \\ 0 \end{pmatrix}$	€12	€ <u>2</u> 3	ϵ_{χ}

$$Y_{d} = \begin{pmatrix} 0 & \tilde{\epsilon}_{2} & 0\\ \tilde{\epsilon}_{ab}c_{ab} & i\tilde{\epsilon}_{ab}s_{ab} & 0\\ 0 & \omega^{2}\hat{\epsilon}_{\chi} & \tilde{\epsilon}_{3} \end{pmatrix}, \ Y_{\theta} = \begin{pmatrix} 0 & 6\tilde{\epsilon}_{ab}c_{ab} & 0\\ -\frac{1}{2}\tilde{\epsilon}_{2} & i6\tilde{\epsilon}_{ab}s_{ab} & 6\omega^{2}\hat{\epsilon}_{\chi}\\ 0 & 0 & -\frac{3}{2}\tilde{\epsilon}_{3} \end{pmatrix}, \ Y_{u} = \begin{pmatrix} \epsilon_{2}^{4} & \epsilon_{12}^{5} & 0\\ \epsilon_{12}^{5} & \epsilon_{23}^{2} & \epsilon_{23}\\ 0 & \epsilon_{23} & y_{t} \end{pmatrix}$$

 $\omega = \exp \frac{2}{3}\pi i$

Normal Hierarchy Model: Quark & Ch. Lepton Sector

$$W_{Y_d} = [T_1 H_{\overline{45}}]_{45} [FH_{24}]_{\overline{45}} \phi_2 + [T_2 H_{24}]_{10} [FH_{\overline{5}}]_{\overline{10}} \phi_{ab} + [T_3 H_{\overline{5}}]_5 [FH_{24}]_{\overline{5}} \phi_3 + [T_3 H_{24}]_{10} [FH_{\overline{5}}]_{\overline{10}} \chi \phi_2 W_{Y_u} = H_5 (T_3^2 + T_2^2 \phi_{ab}^2 + T_1^2 (\phi_2^2)^2 + T_2 T_3 \xi_{23} + T_1 T_2 \xi_{12}^5)$$

flavon:	ϕ_2	ϕ_3	ϕ_{ab}	ξ12	ξ23	$\chi \sim 1'$
VEV:	$\epsilon_2 \begin{pmatrix} 0\\1\\0 \end{pmatrix}$	$\epsilon_3 \begin{pmatrix} 0\\0\\1 \end{pmatrix}$	$\epsilon_{ab} \begin{pmatrix} \cos \theta_{ab} \\ -i \sin \theta_{ab} \\ 0 \end{pmatrix}$	€12	€ <u>2</u> 3	ϵ_{χ}

$$Y_{d} = \begin{pmatrix} 0 & \tilde{\epsilon}_{2} & 0\\ \tilde{\epsilon}_{ab}c_{ab} & i\tilde{\epsilon}_{ab}s_{ab} & 0\\ 0 & \omega^{2}\hat{\epsilon}_{\chi} & \tilde{\epsilon}_{3} \end{pmatrix}, Y_{\theta} = \begin{pmatrix} 0 & 6\tilde{\epsilon}_{ab}c_{ab} & 0\\ -\frac{1}{2}\tilde{\epsilon}_{2} & i6\tilde{\epsilon}_{ab}s_{ab} & 6\omega^{2}\hat{\epsilon}_{\chi}\\ 0 & 0 & -\frac{3}{2}\tilde{\epsilon}_{3} \end{pmatrix}, Y_{u} = \begin{pmatrix} \epsilon_{2}^{4} & \epsilon_{12}^{5} & 0\\ \epsilon_{12}^{5} & \epsilon_{23}^{2} & \epsilon_{23}\\ 0 & \epsilon_{23} & y_{t} \end{pmatrix}$$

 $\omega = \exp \frac{2}{3}\pi i$

Normal Hierarchy Model: Quark & Ch. Lepton Sector

$$W_{Y_d} = [T_1 H_{\overline{45}}]_{45} [FH_{24}]_{\overline{45}} \phi_2 + [T_2 H_{24}]_{10} [FH_{\overline{5}}]_{\overline{10}} \phi_{ab} + [T_3 H_{\overline{5}}]_5 [FH_{24}]_{\overline{5}} \phi_3 + [T_3 H_{24}]_{10} [FH_{\overline{5}}]_{\overline{10}} \chi \phi_2 W_{Y_u} = H_5 (T_3^2 + T_2^2 \phi_{ab}^2 + T_1^2 (\phi_2^2)^2 + T_2 T_3 \xi_{23} + T_1 T_2 \xi_{12}^5)$$

flavon:	ϕ_2	ϕ_3	ϕ_{ab}	ξ12	ξ23	$\chi \sim 1'$
VEV:	$\epsilon_2 \begin{pmatrix} 0\\1\\0 \end{pmatrix}$	$\epsilon_3 \begin{pmatrix} 0\\0\\1 \end{pmatrix}$	$\epsilon_{ab} \begin{pmatrix} \cos \theta_{ab} \\ -\mathrm{i} \sin \theta_{ab} \\ 0 \end{pmatrix}$	€12	€ <u>2</u> 3	ϵ_{χ}

$$Y_{d} = \begin{pmatrix} 0 & \tilde{\epsilon}_{2} & 0\\ \tilde{\epsilon}_{ab}c_{ab} & \mathbf{i}\tilde{\epsilon}_{ab}s_{ab} & 0\\ 0 & \omega^{2}\tilde{\epsilon}_{\chi} & \tilde{\epsilon}_{3} \end{pmatrix}, \ Y_{\theta} = \begin{pmatrix} 0 & 6\tilde{\epsilon}_{ab}c_{ab} & 0\\ -\frac{1}{2}\tilde{\epsilon}_{2} & \mathbf{i}6\tilde{\epsilon}_{ab}s_{ab} & 6\omega^{2}\hat{\epsilon}_{\chi}\\ 0 & 0 & -\frac{3}{2}\tilde{\epsilon}_{3} \end{pmatrix}, \ Y_{u} = \begin{pmatrix} \epsilon_{2}^{4} & \epsilon_{12}^{5} & 0\\ \epsilon_{12}^{5} & \epsilon_{23}^{2} & \epsilon_{23}\\ 0 & \epsilon_{23} & y_{t} \end{pmatrix}$$

 $\omega = \exp \frac{2}{3}\pi i$

Normal Hierarchy Model: Neutrino Sector

flavon:	ϕ_{N_1}	ϕ_{N_2}	ξм
VEV:	$\epsilon_{N_1} \begin{pmatrix} 0\\1\\-1 \end{pmatrix}$	$\epsilon_{N_2} \begin{pmatrix} 1 \\ 1 \\ 1 \end{pmatrix}$	εM

$$\implies Y_{\nu} = \begin{pmatrix} 0 & \epsilon_{N_2} \\ \epsilon_{N_1} & \epsilon_{N_2} \\ -\epsilon_{N_1} & \epsilon_{N_2} \end{pmatrix}, \quad M_R = \begin{pmatrix} M_{R_1} & 0 \\ 0 & M_{R_2} \end{pmatrix}$$

$$\xrightarrow{\text{see-saw I}} \qquad m_{\nu} = \frac{v_u^2}{2} \begin{pmatrix} A & A & A \\ A & A+B & A-B \\ A & A-B & A+B \end{pmatrix} , \quad \text{with} \quad A = \frac{\epsilon_{N_2}^2}{M_{R_2}}, \ B = \frac{\epsilon_{N_1}^2}{M_{R_1}} \end{pmatrix}$$

\Rightarrow Tribimaximal neutrino mixing, normal hierarchy

Vinzenz Maurer (Uni Basel)

Flavour GUT Models with $\theta_{13}^{\text{PMNS}} = \theta_C / \sqrt{2}$

Normal Hierarchy Model: Fit to Data

- We fit 12+2 parameters to 18 observables:
 - 9 quark and charged lepton masses [Xing, Zhang, Zhou '07]
 - 3 quark mixing angles + 1 Dirac CP phase [UTfit '13]
 - 3 neutrino mixing angles
 - neutrino mass square differences [NuFIT '13]
- Predictions for δ^{PMNS} and φ^{PMNS}
- MCMC analysis to determine uncertainties
- Taking into account running from M_{GUT} to $m_t(m_t)$
- SUSY threshold corrections at $M_{SUSY} = 1 \text{ TeV}$ with $\tan \beta = 40$

Normal Hierarchy Model: Fit and MCMC Analysis

Obser	rvable	Value at <i>m</i> t		Best fit result	Uncertainty
m _u m _c m _t	in MeV in GeV in GeV	1.22 0.59 162.9	$^{+0.48}_{-0.40}$ ± 0.08 ± 2.8	1.22 0.59 162.89	$^{+0.49}_{-0.40}$ ± 0.08 $^{+2.62}_{-2.36}$
m _d m _s m _b	in MeV in MeV in GeV	2.76 52 2.75	+1.19 -1.14 ±15 ±0.09	2.73 51.66 2.75	$^{+0.30}_{-0.70}_{+5.60}_{-13.68}_{\pm 0.09}$
m _e m _μ m _τ	in MeV in MeV in MeV	0.485 102.46 1742	±1% ±1% ±1%	0.483 102.83 1741.75	±0.005 +1.01 -0.98 +17.38 -17.10
$\begin{array}{c} \sin\theta_{C} \\ \sin\theta_{23}^{\rm CKM} \\ \sin\theta_{13}^{\rm CKM} \\ \delta^{\rm CKM} \end{array}$	in °	0.2254 0.0421 0.0036 69.2	±0.0007 ±0.0006 ±0.0001 ±3.1	0.2255 0.0422 0.0036 65.65	± 0.0007 ± 0.0006 ± 0.0001 $^{+1.78}_{-0.53}$
$\begin{array}{c} \sin^2\theta \underset{12}{\text{PMNS}}\\ \sin^2\theta \underset{23}{\text{PMNS}}\\ \sin^2\theta \underset{13}{\text{PMNS}}\\ \varphi \underset{\varphi}{\text{PMNS}}\\ \varphi _2^{\text{PMNS}}\end{array}$	in ° in °	0.306 0.437 0.0231	±0.012 +0.061 -0.031 +0.0023 -0.0022	0.317 0.387 0.0269 268.79 297.34	$\begin{array}{c} \pm 0.006 \\ + 0.017 \\ - 0.023 \\ + 0.0011 \\ - 0.0015 \\ + 1.32 \\ - 1.72 \\ + 8.66 \\ - 10.01 \end{array}$
Δm_{sol}^2 Δm_{atm}^2	in 10^{-5} eV^2 in 10^{-3} eV^2	7.45 2.421	+0.19 -0.16 +0.022 -0.023	7.45 2.421	+0.18 -0.17 +0.022 -0.023

Vinzenz Maurer (Uni Basel)

Flavour GUT Models with $\theta_{13}^{\text{PMNS}} = \theta_C / \sqrt{2}$

Normal Hierarchy Model: Fit and MCMC Analysis

Obser	vable	Value at <i>m</i> t		Best fit result	Uncertainty
m _u m _c m _t	in MeV in GeV in GeV	1.22 0.59 162.9	$^{+0.48}_{-0.40}$ ± 0.08 ± 2.8	1.22 0.59 162.89	$^{+0.49}_{-0.40}$ ± 0.08 $^{+2.62}_{-2.36}$
m _d m _s m _b	in MeV in MeV in GeV	2.76 52 2.75	+1.19 -1.14 ±15 ±0.09	2.73 51.66 2.75	$^{+0.30}_{-0.70}$ $^{+5.60}_{-13.68}$ ± 0.09
m _e m _μ m _π	in MeV in MeV	0.485 102.46	±1% ±1%	0.483 102.83	±0.005 +1.01 -0.98 +17.38
$\sin heta_C$ $\sin heta_{23}^{ m CKM}$	- χ	²/d.o	.f. = 2	2.0	±0.0007 ±0.0006
sin θ ^{CKM} ₁₃ _δ CKM	in °	0.0036 69.2	$\substack{\pm 0.0001\\ \pm 3.1}$	0.0036 65.65	±0.0001 +1.78 -0.53
$\begin{array}{c} \sin^2 \theta_{12}^{\text{PMNS}} \\ \sin^2 \theta_{23}^{\text{PMNS}} \\ \sin^2 \theta_{13}^{\text{PMNS}} \end{array}$		0.306 0.437 0.0231	± 0.012 +0.061 -0.031 +0.0023 -0.0022	0.317 0.387 0.0269	± 0.006 +0.017 -0.023 +0.0011 -0.0015
δ^{PMNS} φ^{PMNS}_{2}	in ° in °		-	268.79 297.34	+1.32 -1.72 +8.66 -10.01
Δm_{sol}^2 Δm_{atm}^2	in 10^{-5} eV^2 in 10^{-3} eV^2	7.45 2.421	+0.19 -0.16 +0.022 -0.023	7.45 2.421	+0.18 -0.17 +0.022 -0.023

Vinzenz Maurer (Uni Basel)

Flavour GUT Models with $\theta_{13}^{\text{PMNS}} = \theta_C / \sqrt{2}$

Inverse hierarchy:

m₂ m₁

Problem for Flavour Models

$$\frac{m_1 - m_2}{m_2} \ll 1 \quad \Rightarrow \text{Finetuning}?$$

Vinzenz Maurer (Uni Basel)

Flavour GUT Models with $\theta_{12}^{\text{PMNS}} = \theta_C / \sqrt{2}$

One promising approach [King, Singh '00] :

$$M_{R} = \hat{M}_{R} \begin{pmatrix} \varepsilon & 1 \\ 1 & 0 \end{pmatrix}, \ Y_{\nu} = \begin{pmatrix} a & 0 \\ 0 & b \\ 0 & c \end{pmatrix}$$

$$\begin{array}{ccc} \stackrel{\text{see-saw I}}{\longrightarrow} & m_{\nu} = \begin{pmatrix} 0 & B & C \\ B & 0 & 0 \\ C & 0 & 0 \end{pmatrix} + & \alpha & \begin{pmatrix} 0 & 0 & 0 \\ 0 & B & C \\ 0 & C & C^2/B \end{pmatrix} \\ \text{with } B = b \frac{a v_u^2}{2 \hat{M}_R}, C = c \frac{a v_u^2}{2 \hat{M}_R}, \alpha = -\varepsilon \frac{b}{a}. \end{array}$$

$$m_{\nu} = \begin{pmatrix} 0 & B & C \\ B & 0 & 0 \\ C & 0 & 0 \end{pmatrix} + \alpha \begin{pmatrix} 0 & 0 & 0 \\ 0 & B & C \\ 0 & C & C^2/B \end{pmatrix}$$

 \Rightarrow Masses:

$$m_3 = 0 \ -\Delta m_{
m atm}^2 = m_2^2 pprox B^2 + C^2 \,,$$
 $\Delta m_{
m sol}^2 = m_2^2 - m_1^2 pprox 2 \, lpha \, rac{(B^2 + C^2)^{3/2}}{|B|} \,,$

Strong inverse neutrino mass hierarchy Solar mass splitting $\sim \alpha \sim \varepsilon \Rightarrow$ naturally small

$$m_{\nu} = \begin{pmatrix} 0 & B & C \\ B & 0 & 0 \\ C & 0 & 0 \end{pmatrix} + \alpha \begin{pmatrix} 0 & 0 & 0 \\ 0 & B & C \\ 0 & C & C^2/B \end{pmatrix}$$

 \Rightarrow Mixing Angles:

$$\tan \theta_{12}^{\nu} \approx \left| 1 - \frac{\alpha}{2} \frac{\sqrt{B^2 + C^2}}{|B|} \right| \approx \left| 1 + \frac{1}{4} \frac{\Delta m_{sol}^2}{\Delta m_{atm}^2} \right|$$
$$\tan \theta_{23}^{\nu} = \left| \frac{C}{B} \right|$$
$$\theta_{13}^{\nu} = 0$$

Implementation:

$$\begin{split} W_{Y_{\nu}} &= (H_5F)(N_1\phi_1 + N_2\phi_{bc}) \\ W_{M_R} &= \xi_M^4(N_1N_2 + \phi_{bc}^2N_1^2) \end{split} + \begin{array}{|c|c|c|c|c|} \hline flavon: & \phi_1 & \phi_{bc} & \xi_M \\ \hline VEV: & \epsilon_1 \begin{pmatrix} 1 \\ 0 \\ 0 \end{pmatrix} & \epsilon_{bc} \begin{pmatrix} 0 \\ c_{bc} \\ s_{bc} \end{pmatrix} & \epsilon_M \end{split}$$

$$\Rightarrow \qquad M_{R} = \hat{M}_{R} \begin{pmatrix} \varepsilon & 1 \\ 1 & 0 \end{pmatrix}, \ Y_{\nu} = \begin{pmatrix} a & 0 \\ 0 & b \\ 0 & c \end{pmatrix}$$

with $a = \epsilon_{1}, b = \epsilon_{bc} \cos \theta_{bc}, c = \epsilon_{bc} \sin \theta_{bc}, \varepsilon \simeq \epsilon_{bc}^{2}$

SUSY 2013 30th Aug. '13

9/13

Flavour GUT Models with $\theta_{13}^{\text{PMNS}} = \theta_C / \sqrt{2}$

Inverse Hierarchy Model: Quark & Ch. Lepton Sector

$$W_{Y_d} = [T_1 H_{\overline{45}}]_{45} [FH_{24}]_{\overline{45}} \phi_2 + [T_2 H_{24}]_{10} [FH_{\overline{5}}]_{\overline{10}} \phi_{ab} + [T_3 H_{\overline{5}}]_5 [FH_{24}]_{\overline{5}} \phi_3 + [T_3 H_{24}]_{10} [FH_{\overline{5}}]_{\overline{10}} \chi \phi_2 W_{Y_u} = H_5 (T_3^2 + T_2^2 \phi_{ab}^2 + T_1^2 (\phi_2^2)^2 + T_2 T_3 \xi_{23} + T_1 T_2 \xi_{12}^5)$$

flavon:	ϕ_2	ϕ_3	ϕ_{ab}	ξ12	ξ23
VEV:	$\epsilon_2 \begin{pmatrix} 0 \\ -i \\ 0 \end{pmatrix}$	$\epsilon_3 \begin{pmatrix} 0\\0\\1 \end{pmatrix}$	$\epsilon_{ab} \begin{pmatrix} \cos \theta_{ab} \\ \sin \theta_{ab} \\ 0 \end{pmatrix}$	€12	€ <u>2</u> 3

$$Y_{d} = \begin{pmatrix} 0 & i\,\tilde{\epsilon}_{2} & 0\\ \tilde{\epsilon}_{ab}c_{ab} & \tilde{\epsilon}_{ab}s_{ab} & 0\\ 0 & 0 & \tilde{\epsilon}_{3} \end{pmatrix}, \ Y_{\theta} = \begin{pmatrix} 0 & 6\tilde{\epsilon}_{ab}c_{ab} & 0\\ -\frac{1}{2}i\,\tilde{\epsilon}_{2} & 6\tilde{\epsilon}_{ab}s_{ab} & 0\\ 0 & 0 & -\frac{3}{2}\tilde{\epsilon}_{3} \end{pmatrix}, \ Y_{u} = \begin{pmatrix} \epsilon_{2}^{4} & \epsilon_{12}^{5} & 0\\ \epsilon_{12}^{5} & \epsilon_{23}^{2} & \epsilon_{23}\\ 0 & \epsilon_{23} & y_{t} \end{pmatrix}$$

Model with Inverse Hierarchy: Fit and MCMC Analysis

Observable		Value at <i>m_t</i>		Best fit result	Uncertainty
mu mc mt	in MeV in GeV in GeV	1.22 0.59 162.9	$^{+0.48}_{-0.40}$ ± 0.08 ± 2.8	1.22 0.59 162.91	+0.50 -0.39 +0.07 -0.09 +3.35 -2.44
m _d m _s m _b	in MeV in MeV in GeV	2.76 52 2.75	+1.19 -1.14 ±15 ±0.09	2.73 50.70 2.75	$^{+0.25}_{-0.54}$ $^{+4.86}_{-9.72}$ ± 0.09
m _e m _μ m _τ	in MeV in MeV in MeV	0.485 102.46 1742	±1% ±1% ±1%	0.483 102.87 1741.99	±0.005 +1.04 -0.91 +16.84 -17.70
$\begin{array}{c} \sin\theta_{C}\\ \sin\theta_{23}^{\rm CKM}\\ \sin\theta_{13}^{\rm CKM}\\ \delta^{\rm CKM}\\ \delta^{\rm CKM}\end{array}$	in °	0.2254 0.0421 0.0036 69.2	± 0.0007 ± 0.0006 ± 0.0001 ± 3.1	0.2255 0.0421 0.0036 69.27	± 0.0007 ± 0.0006 ± 0.0001 $^{+0.91}$ $^{-0.69}$
$\begin{array}{c} \sin^2\theta \frac{PMNS}{12}\\ \sin^2\theta \frac{PMNS}{23}\\ \sin^2\theta \frac{PMNS}{13}\\ \delta^{PMNS}\\ \varphi^{PMNS}\end{array}$	in ° in °	0.306 0.437 0.0231	±0.012 +0.061 -0.031 +0.0023 -0.0022 -	0.303 0.397 0.0267 180 180	± 0.005 +0.023 -0.022 +0.0016 -0.0015 -
Δm_{sol}^2 Δm_{atm}^2	in 10^{-5} eV^2 in 10^{-3} eV^2	7.45 -2.410	+0.19 -0.16 +0.062 -0.063	7.45 —2.410	+0.18 -0.17 +0.062 -0.064

Vinzenz Maurer (Uni Basel)

Flavour GUT Models with $\theta_{13}^{\text{PMNS}} = \theta_C / \sqrt{2}$

Model with Inverse Hierarchy: Fit and MCMC Analysis

Obser	vable	Value	e at <i>m_t</i>	Best fit result	Uncertainty
mu mc mt	in MeV in GeV in GeV	1.22 0.59 162.9	$^{+0.48}_{-0.40}$ ± 0.08 ± 2.8	1.22 0.59 162.91	$+0.50 \\ -0.39 \\ +0.07 \\ -0.09 \\ +3.35 \\ -2.44$
m _d m _s m _b	in MeV in MeV in GeV	2.76 52 2.75	+1.19 -1.14 ±15 ±0.09	2.73 50.70 2.75	$^{+0.25}_{-0.54}$ $^{+4.86}_{-9.72}$ ± 0.09
m _e m _μ m _τ	in MeV in MeV	0.485 102.46	±1% ±1%	0.483 102.87	±0.005 +1.04 -0.91 +16.84 -17.70
	X	0.0421	±0.0000 ±0.0001	0.0421	± 0.0007 ± 0.0006 ± 0.0001
δСКМ	in $^{\circ}$	69.2	±3.1	69.27	+0.91 -0.69
$ \begin{array}{c} \sin^2\theta \frac{\text{PMNS}}{12} \\ \sin^2\theta \frac{\text{PMNS}}{23} \\ \sin^2\theta \frac{\text{PMNS}}{13} \\ \\ & \delta \frac{\text{PMNS}}{\delta} \end{array} $	in ^o	0.306 0.437 0.0231	± 0.012 +0.061 -0.031 +0.0023 -0.0022	0.303 0.397 0.0267 180	± 0.005 +0.023 -0.022 +0.0016 -0.0015
$_{\varphi}$ PMNS	in °		-	180	-
$\Delta m_{ m sol}^2$ $\Delta m_{ m atm}^2$	in 10^{-5} eV^2 in 10^{-3} eV^2	7.45 -2.410	+0.19 -0.16 +0.062 -0.063	7.45 —2.410	+0.18 -0.17 +0.062 -0.064

Vinzenz Maurer (Uni Basel)

Flavour GUT Models with $\theta_{13}^{\text{PMNS}} = \theta_C / \sqrt{2}$

	IH	NH	Data
$\Delta m_{\rm atm}^2$	< 0	> 0	—
δ^{PMNS}	180°	268.79° ^{+1.32°} _1.72°	-
$\theta_{12}^{\text{PMNS}}$	$33.38^{\circ}{}^{+0.30^{\circ}}_{-0.28^{\circ}}$	$34.29^{\circ}{}^{+0.35^{\circ}}_{-0.39^{\circ}}$	$33.57^{\circ}{}^{+0.77^{\circ}}_{-0.75^{\circ}}$
$\theta_{23}^{\mathrm{PMNS}}$	$39.06^{\circ}{+1.33^{\circ}}_{-1.32^{\circ}}$	$38.49^{\circ}{}^{+1.11^{\circ}}_{-1.26^{\circ}}$	$41.4^{\circ}_{-1.8^{\circ}}^{+3.5^{\circ}}$
$\theta_{13}^{\mathrm{PMNS}}$	$9.41^{\circ}{}^{+0.28^{\circ}}_{-0.27^{\circ}}$	$9.43^{\circ}{}^{+0.20^{\circ}}_{-0.25^{\circ}}$	$8.75^{\circ + 0.42^{\circ}}_{-0.44^{\circ}}$
m_{etaeta}	$(1.83^{+0.05}_{-0.06})\cdot 10^{-2}~{ m eV}$	$(2.31^{+0.12}_{-0.09})\cdot 10^{-3}~{ m eV}$	—
δ^{CKM}	69.27°+0.91° 0.69°	65.65° ^{+1.78°} 0.53°	$69.2^\circ\pm3.1^\circ$

- Sign of $\Delta m_{\rm atm}^2$
- Dirac CP phase δ^{PMNS}
- $\theta_{12}^{\text{PMNS}}$ with future ~60km baseline reactor experiments
- Effective neutrino mass for $0\nu\beta\beta$ experiments $m_{\beta\beta}$
- CKM phase δ^{CKM}

	IH	NH	Data
$\Delta m_{\rm atm}^2$	< 0	> 0	_
δ^{PMNS}	180°	268.79° ^{+1.32°} 	—
$\theta_{12}^{\text{PMNS}}$	$33.38^{\circ}{}^{+0.30^{\circ}}_{-0.28^{\circ}}$	$34.29^{\circ}{}^{+0.35^{\circ}}_{-0.39^{\circ}}$	$33.57^{\circ}{}^{+0.77^{\circ}}_{-0.75^{\circ}}$
θ_{23}^{PMNS}	$39.06^{\circ}{}^{+1.33^{\circ}}_{-1.32^{\circ}}$	$38.49^{\circ}^{+1.11^{\circ}}_{-1.26^{\circ}}$	$41.4^{\circ}_{-1.8^{\circ}}^{+3.5^{\circ}}$
$\theta_{13}^{\text{PMNS}}$	$9.41^{\circ}_{-0.27^{\circ}}^{+0.28^{\circ}}$	$9.43^{\circ}{}^{+0.20^{\circ}}_{-0.25^{\circ}}$	$8.75^{\circ + 0.42^{\circ}}_{-0.44^{\circ}}$
m_{etaeta}	$(1.83^{+0.05}_{-0.06})\cdot 10^{-2}~{ m eV}$	$(2.31^{+0.12}_{-0.09})\cdot 10^{-3}~{ m eV}$	—
δ^{CKM}	69.27° ^{+0.91°} 0.69°	65.65° ^{+1.78°} 	$69.2^\circ\pm3.1^\circ$

• Sign of $\Delta m_{\rm atm}^2$

- Dirac CP phase δ^{PMNS}
- θ_{12}^{PMNS} with future ~60km baseline reactor experiments
- Effective neutrino mass for $0\nu\beta\beta$ experiments $m_{\beta\beta}$
- CKM phase δ^{CKM}

	IH	NH	Data
$\Delta m_{\rm atm}^2$	< 0	> 0	—
δ^{PMNS}	180°	268.79° ^{+1.32°} _1.72°	_
$\theta_{12}^{\text{PMNS}}$	$33.38^{\circ}{}^{+0.30^{\circ}}_{-0.28^{\circ}}$	$34.29^{\circ}{}^{+0.35^{\circ}}_{-0.39^{\circ}}$	$33.57^{\circ}{}^{+0.77^{\circ}}_{-0.75^{\circ}}$
$\theta_{23}^{\mathrm{PMNS}}$	$39.06^{\circ}{+1.33^{\circ}}_{-1.32^{\circ}}$	$38.49^{\circ}{}^{+1.11^{\circ}}_{-1.26^{\circ}}$	$41.4^{\circ}_{-1.8^{\circ}}^{+3.5^{\circ}}$
$\theta_{13}^{\text{PMNS}}$	$9.41^{\circ}_{-0.27^{\circ}}^{+0.28^{\circ}}$	$9.43^{\circ}{}^{+0.20^{\circ}}_{-0.25^{\circ}}$	$8.75^{\circ}{}^{+0.42^{\circ}}_{-0.44^{\circ}}$
m_{etaeta}	$(1.83^{+0.05}_{-0.06})\cdot 10^{-2}~{ m eV}$	$(2.31^{+0.12}_{-0.09})\cdot 10^{-3}~{ m eV}$	—
δ^{CKM}	69.27°+0.91° 	65.65° ^{+1.78°} 0.53°	$69.2^\circ\pm3.1^\circ$

- Sign of $\Delta m_{\rm atm}^2$
- Dirac CP phase δ^{PMNS}
- $\theta_{12}^{\text{PMNS}}$ with future ~60km baseline reactor experiments
- Effective neutrino mass for $0\nu\beta\beta$ experiments $m_{\beta\beta}$
- CKM phase δ^{CKM}

	IH	NH	Data
$\Delta m_{\rm atm}^2$	< 0	> 0	—
δ^{PMNS}	180°	268.79° ^{+1.32°} 	_
θ_{12}^{PMNS}	$33.38^{\circ}{}^{+0.30^{\circ}}_{-0.28^{\circ}}$	$34.29^{\circ}_{-0.39^{\circ}}^{+0.35^{\circ}}$	$33.57^{\circ}{}^{+0.77^{\circ}}_{-0.75^{\circ}}$
$\theta_{23}^{\text{PMNS}}$	$39.06^{\circ}{+1.33^{\circ}}_{-1.32^{\circ}}$	$38.49^{\circ}^{+1.11^{\circ}}_{-1.26^{\circ}}$	$41.4^{\circ}_{-1.8^{\circ}}^{+3.5^{\circ}}$
$\theta_{13}^{\text{PMNS}}$	$9.41^{\circ}_{-0.27^{\circ}}^{+0.28^{\circ}}$	$9.43^{\circ}{}^{+0.20^{\circ}}_{-0.25^{\circ}}$	$8.75^{\circ}{}^{+0.42^{\circ}}_{-0.44^{\circ}}$
m_{etaeta}	$(1.83^{+0.05}_{-0.06}) \cdot 10^{-2} \text{ eV}$	$(2.31^{+0.12}_{-0.09})\cdot 10^{-3}~{ m eV}$	—
δ^{CKM}	69.27° ^{+0.91°} 0.69°	65.65° ^{+1.78°} 	$69.2^\circ\pm3.1^\circ$

- Sign of $\Delta m_{\rm atm}^2$
- Dirac CP phase δ^{PMNS}
- $\theta_{12}^{\text{PMNS}}$ with future ~60km baseline reactor experiments
- Effective neutrino mass for $0\nu\beta\beta$ experiments $m_{\beta\beta}$
- CKM phase δ^{CKM}

	IH	NH	Data
$\Delta m_{\rm atm}^2$	< 0	> 0	—
$\delta^{\rm PMNS}$	180°	$268.79^{\circ}{}^{+1.32^{\circ}}_{-1.72^{\circ}}$	-
$\theta_{12}^{\text{PMNS}}$	$33.38^{\circ}{}^{+0.30^{\circ}}_{-0.28^{\circ}}$	$34.29^{\circ}{}^{+0.35^{\circ}}_{-0.39^{\circ}}$	$33.57^{\circ}{}^{+0.77^{\circ}}_{-0.75^{\circ}}$
$\theta_{23}^{\mathrm{PMNS}}$	$39.06^{\circ}{+1.33^{\circ}}_{-1.32^{\circ}}$	$38.49^{\circ}^{+1.11^{\circ}}_{-1.26^{\circ}}$	$41.4^{\circ}_{-1.8^{\circ}}^{+3.5^{\circ}}$
$\theta_{13}^{\text{PMNS}}$	$9.41^{\circ}_{-0.27^{\circ}}^{+0.28^{\circ}}$	$9.43^{\circ}{}^{+0.20^{\circ}}_{-0.25^{\circ}}$	$8.75^{\circ}{}^{+0.42^{\circ}}_{-0.44^{\circ}}$
m_{etaeta}	$(1.83^{+0.05}_{-0.06})\cdot 10^{-2}~{ m eV}$	$(2.31^{+0.12}_{-0.09})\cdot 10^{-3}~{ m eV}$	—
δ^{CKM}	$69.27^{\circ}^{+0.91^{\circ}}_{-0.69^{\circ}}$	$65.65^{\circ}^{+1.78^{\circ}}_{-0.53^{\circ}}$	$69.2^\circ\pm3.1^\circ$

- Sign of $\Delta m_{\rm atm}^2$
- Dirac CP phase δ^{PMNS}
- $\theta_{12}^{\text{PMNS}}$ with future ~60km baseline reactor experiments
- Effective neutrino mass for $0\nu\beta\beta$ experiments $m_{\beta\beta}$
- CKM phase δ^{CKM}

	IH	NH	Data
$\Delta m_{\rm atm}^2$	< 0	> 0	—
$\delta^{\rm PMNS}$	180°	$268.79^{\circ}{}^{+1.32^{\circ}}_{-1.72^{\circ}}$	-
$\theta_{12}^{\text{PMNS}}$	$33.38^{\circ}{}^{+0.30^{\circ}}_{-0.28^{\circ}}$	$34.29^{\circ}{}^{+0.35^{\circ}}_{-0.39^{\circ}}$	$33.57^{\circ}{}^{+0.77^{\circ}}_{-0.75^{\circ}}$
$\theta_{23}^{\mathrm{PMNS}}$	$39.06^{\circ}{+1.33^{\circ}}_{-1.32^{\circ}}$	$38.49^{\circ}^{+1.11^{\circ}}_{-1.26^{\circ}}$	$41.4^{\circ}_{-1.8^{\circ}}^{+3.5^{\circ}}$
$\theta_{13}^{\mathrm{PMNS}}$	$9.41^{\circ}{}^{+0.28^{\circ}}_{-0.27^{\circ}}$	$9.43^{\circ}{}^{+0.20^{\circ}}_{-0.25^{\circ}}$	$8.75^{\circ + 0.42^{\circ}}_{-0.44^{\circ}}$
m_{etaeta}	$(1.83^{+0.05}_{-0.06})\cdot 10^{-2}~{ m eV}$	$(2.31^{+0.12}_{-0.09})\cdot 10^{-3}~{ m eV}$	—
δ^{CKM}	69.27° ^{+0.91°} 0.69°	65.65° ^{+1.78°} 	$69.2^\circ\pm3.1^\circ$

- Sign of $\Delta m_{\rm atm}^2$
- Dirac CP phase δ^{PMNS}
- θ_{12}^{PMNS} with future ~60km baseline reactor experiments
- Effective neutrino mass for $0\nu\beta\beta$ experiments $m_{\beta\beta}$
- CKM phase δ^{CKM}

Proposed SU(5) × A₄ models that have

- $\theta_{13}^{\text{PMNS}} \simeq \theta_C / \sqrt{2}$
- Spontaneous CPV
- Right-angled unitarity triangle
- Natural near-degeneracy in IH case
- Good fits with
 - χ^2 /d.o.f. = 2.0 (NH) and 1.1 (IH)
 - Clear predictions for δ^{PMNS}
- To be tested and distinguished by next round of experiments

Thank you for your attention!

Backup: Alignment Mechanisms

For ϕ_{bc} (almost analogous for ϕ_{ab}):

$$W = S_{bc}[(\phi_{bc})^6 - M^2] + D^{\beta}(\phi_{bc} \star \phi_{bc})\phi_{bc}$$
$$+ D^{\gamma}[(\phi_{bs}^2)_{\mathbf{1}'}(\phi_{bs}^2)_{\mathbf{1}''} + k(\phi_{bc} \star \phi_{bc})^2]$$

For ϕ_1, ϕ_2, ϕ_3 :

$$W = \sum_{i} S_{i}[(\phi_{i})^{n_{i}} - M^{2}] + O_{i,j}(\phi_{i}\phi_{j}) + O_{i,j}'(\phi_{i}\phi_{j})_{\mathbf{1}''}$$

with $n_1 = 2, n_2 = 6, n_3 = 2$

For ϕ_{N_1} , ϕ_{N_2} :

$$W = S_{N_1}[(\phi_{N_1})^6 - M^2] + S_{N_2}[(\phi_{N_2})^6 - M^2] + D_{N_1}(\phi_{N_1} \star \phi_{N_1})\phi_{N_1} + O_{N_1,N_2}(\phi_{N_1}\phi_{N_2}) + D'_{N_2}(\phi^2_{N_2})_{\mathbf{1}''} + D''_{N_2}(\phi^2_{N_2})_{\mathbf{1}'}$$

Backup: Correlations (Normal Hierarchy)

Black star marks the best fit value. Yellow and grey regions give the 1σ and 3σ HPD regions, respectively. Dashed grey lines indicate the 1σ intervals of the measured observables.

Vinzenz Maurer (Uni Basel)

Backup: Correlations (Inverse Hierarchy)

Black star marks the best fit value. Blue and golden regions give the 1σ and 3σ HPD regions, respectively. Dashed grey lines indicate the 1σ intervals of the measured observables.