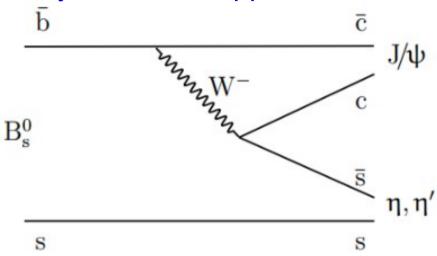


21st International Conference on Supersymmetry and Unification of Fundamental Interactions ICTP Trieste, Italy, 26—31 August 2013



$B_s \rightarrow J/\psi \eta^{(\prime)} decays$

Dominated by the color-suppressed tree diagrams:

Physics motivation:

Measurement of the B-mesons effective lifetimes

[Eur.Phys.J. C71 (2011) 1798]

Measurement of the CP-violation and B_s- mesons mixing angle [Eur.Phys.J. C71 (2011) 1798]

Measurement of the η-η' mixing angle and gluonic component contribution

[Eur.Phys.J. C71 (2011) 1798]

η-η' mixing

The η - and η '-mesons are the result of mixing between a singlet and octet states:

$$\begin{pmatrix} |\eta\rangle \\ |\eta'\rangle \end{pmatrix} = \begin{pmatrix} \cos\theta_P & -\sin\theta_P \\ \sin\theta_P & \cos\theta_P \end{pmatrix} \times \begin{pmatrix} |\eta_8\rangle \\ |\eta_1\rangle \end{pmatrix}$$

η-η' mixing

The η - and η '-mesons are the result of mixing between a singlet and octet states:

Phys.Rev. D85 (2012) 013016 Eur.Phys.J. C71 (2011) 1798

$$\begin{pmatrix} |\eta\rangle \\ |\eta'\rangle \end{pmatrix} = \begin{pmatrix} \cos\theta_P & -\sin\theta_P \\ \sin\theta_P & \cos\theta_P \end{pmatrix} \times \begin{pmatrix} |\eta_8\rangle \\ |\eta_1\rangle \end{pmatrix}$$

In terms of isospin singlets:

$$\left|\eta\right\rangle = \cos\varphi_{\mathrm{P}}\left|\eta_{\mathrm{q}}\right\rangle - \sin\varphi_{\mathrm{P}}\left|\eta_{\mathrm{s}}\right\rangle,$$

$$\left|\eta^{'}\right\rangle = \cos\varphi_{\rm G}\sin\varphi_{\rm P}\left|\eta_{\rm q}\right\rangle + \cos\varphi_{\rm G}\cos\varphi_{\rm P}\left|\eta_{\rm s}\right\rangle + \sin\varphi_{\rm G}\left|\rm gg\right\rangle$$

$$|\eta_{\rm q}\rangle = \frac{1}{\sqrt{2}} \left(|u\bar{u}\rangle + |d\bar{d}\rangle \right), \ |\eta_{\rm s}\rangle = |s\bar{s}\rangle$$

Mixing phases

Purely gluonic component

Global fit between previous measurements:

Not taking into account the gluonic component: $\phi_P = (41.4 \pm 0.5)^\circ$

Taking into account the gluonic component: $\Phi_P = (39.7 \pm 0.7)^\circ$

 $\Phi_{\rm G} = (22 \pm 3)^{\circ}$

[KLOE, Phys.Lett.B648 (2007) 267]

η-η' mixing

The η - and η '-mesons are the result of mixing between a singlet and octet states:

> Phys.Rev. D85 (2012) 013016 Eur. Phys. J. C71 (2011) 1798

$$\begin{pmatrix} |\eta\rangle \\ |\eta'\rangle \end{pmatrix} = \begin{pmatrix} \cos\theta_P & -\sin\theta_P \\ \sin\theta_P & \cos\theta_P \end{pmatrix} \times \begin{pmatrix} |\eta_8\rangle \\ |\eta_1\rangle \end{pmatrix}$$

In terms of isospin singlets:

$$\left|\eta\right\rangle = \cos\varphi_{\mathrm{P}}\left|\eta_{\mathrm{q}}\right\rangle - \sin\varphi_{\mathrm{P}}\left|\eta_{\mathrm{s}}\right\rangle,$$

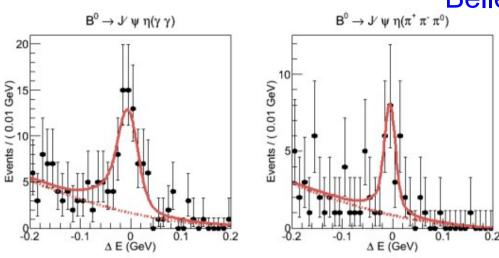
$$\left|\eta^{'}\right\rangle = \cos\!{\varphi_{\rm G}}\sin\!{\varphi_{\rm P}}\left|\eta_{\rm q}\right\rangle + \cos\!{\varphi_{\rm G}}\cos\!{\varphi_{\rm P}}\left|\eta_{\rm s}\right\rangle + \sin\!{\varphi_{\rm G}}\left|{\rm gg}\right\rangle$$

$$\left|\eta_{\rm q}\right\rangle = \frac{1}{\sqrt{2}} \left(\left|u\bar{u}\right\rangle + \left|d\bar{d}\right\rangle\right), \ \left|\eta_{\rm s}\right\rangle = \left|s\bar{s}\right\rangle$$

Mixing phases Purely gluonic component

Ratio of branching fractions:

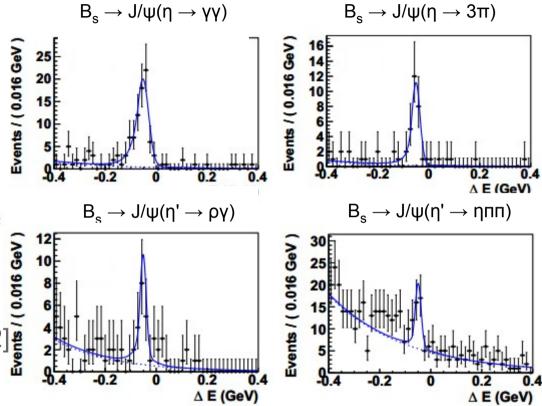
Not taking into account the gluonic component:
$$\frac{\mathcal{B}(B_s^0 \to J\psi\eta')}{\mathcal{B}(B_s^0 \to J\psi\eta)} \cdot \frac{\mathcal{F}_s^{\eta}}{\mathcal{F}_s^{\eta'}} = \frac{\cos^2\phi_G}{\tan^2\phi_P}$$


Taking into account the gluonic component:

$$\tfrac{\mathcal{B}(B_s^0 \to J \psi \eta')}{\mathcal{B}(B_s^0 \to J \psi \eta)} \cdot \tfrac{\mathcal{F}_s^\eta}{\mathcal{F}_s^{\eta'}} = \tfrac{1}{\tan^2 \varphi_P}$$

Previous studies

Belle, 2012


BR(B⁰
$$\rightarrow$$
 J/ψη) = (12.3 ± 1.8 ± 0.7) ×10⁻⁶ BR(B⁰ \rightarrow J/ψη') < 7.4 ×10⁻⁶ @90% CL

[Phys.Rev. D85 091102]

Theoretical prediction (no glueball contribution)

P. Colangelo, F. De Fazio, W. Wang

BR(B_s
$$\rightarrow$$
 J/ψη) = (4.3 ± 0.2) ×10⁻⁴
BR(B_s \rightarrow J/ψη') = (4.4 ± 0.2) ×10⁻⁴
[Phys.Rev.D83:094027,2011]

BR(B_s
$$\rightarrow$$
 J/ $\psi\eta$) = (5.1 ± 0.50 ± 0.25) ×10⁻⁴
BR(B_s \rightarrow J/ $\psi\eta$ ') = (3.71 ± 0.60 ± 0.18) ×10⁻⁴

$$\frac{\mathsf{BR}(\mathsf{B}_{\mathsf{S}}\to\mathsf{J/\psi\eta'})}{\mathsf{BR}(\mathsf{B}_{\mathsf{S}}\to\mathsf{J/\psi\eta})} = 0.73 \pm 0.14 \pm 0.02$$

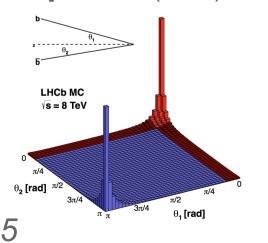
[Phys. Rev. Lett. 108,181808]

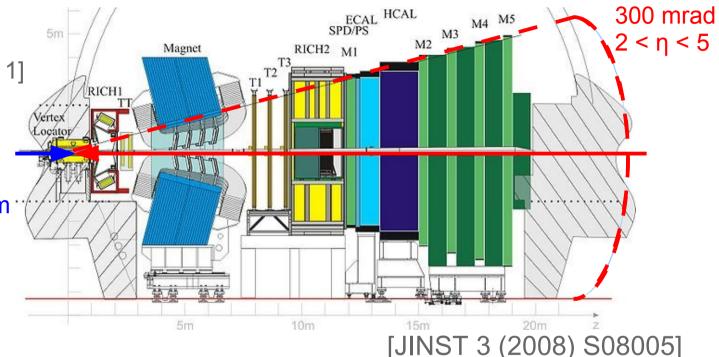
The LHCb experiment

Experiment devoted to the studies of the heavy flavour physics

High b- and c-quarks production rates. At 7 TeV:

$$-\sigma(pp \to ccX) = ~6 \text{ mb}$$
 [Nucl.Phys.B 871 (2013) 1]


$$-\sigma(pp \to bbX) = \sim 0.3 \text{ mb}$$
 [PLB 694 (2010) 209]


All possible beauty and charm " species are produced

Cross-section in LHCb acceptance @7TeV

$$\sigma_{bb} = 75 \mu b$$

[PLB 694 (2010) 209]

Propertime resolution: ~45 fs

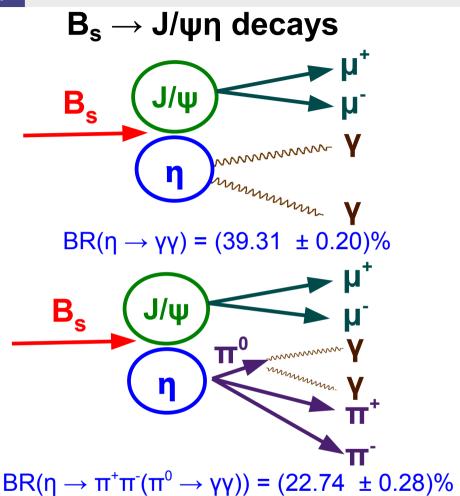
Momentum resolution: ~0.4% for 5 GeV/c tracks

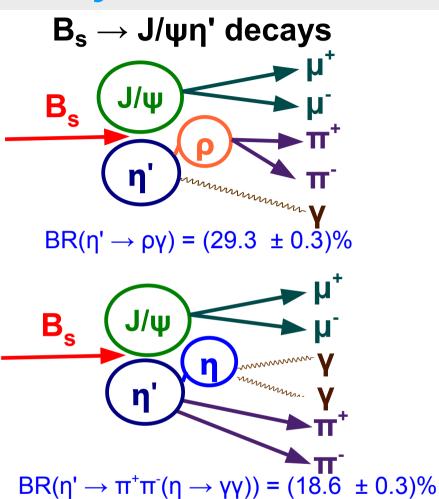
~0.6% for 100 GeV/c tracks

Charged pions

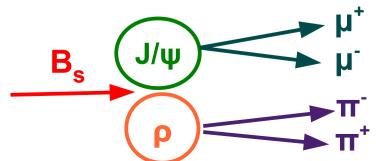
identification efficiency: ~95% are successfully identified

Photon energy resolution: ~1%


Muon identification efficiency: ~97% are successfully identified


Muon trigger efficiency:

~90%



Reconstructed decay modes

Normalization channel B → J/ψρ

BR(B⁰
$$\rightarrow$$
 J/ $\psi\rho$) = (2.7 ± 0.4)×10⁻⁴

Cut-based analysis

Similar selections for all the signal and normalization channels

Branching fractions measurement

Data description

1.0 fb⁻¹ of data collected in 2011 Proton-proton collisions Center of mass energy 7 TeV Particle data group 2012

Phys. Rev. D 85 032008 LHCb 2012

$$\frac{\mathcal{B}(B \to \psi X^0)}{\mathcal{B}(B \to \psi Y^0)} = \frac{N_{\psi X^0}}{N_{\psi Y^0}}$$

$$X^0, Y^0 = \eta, \eta', \rho$$

$$\times \frac{\varepsilon_{\psi Y^0}^{tot}}{\varepsilon_{\psi X^0}^{tot}} \times \frac{\mathcal{B}(Y^0)}{\mathcal{B}(X^0)} \times \frac{f_y}{f_x}$$

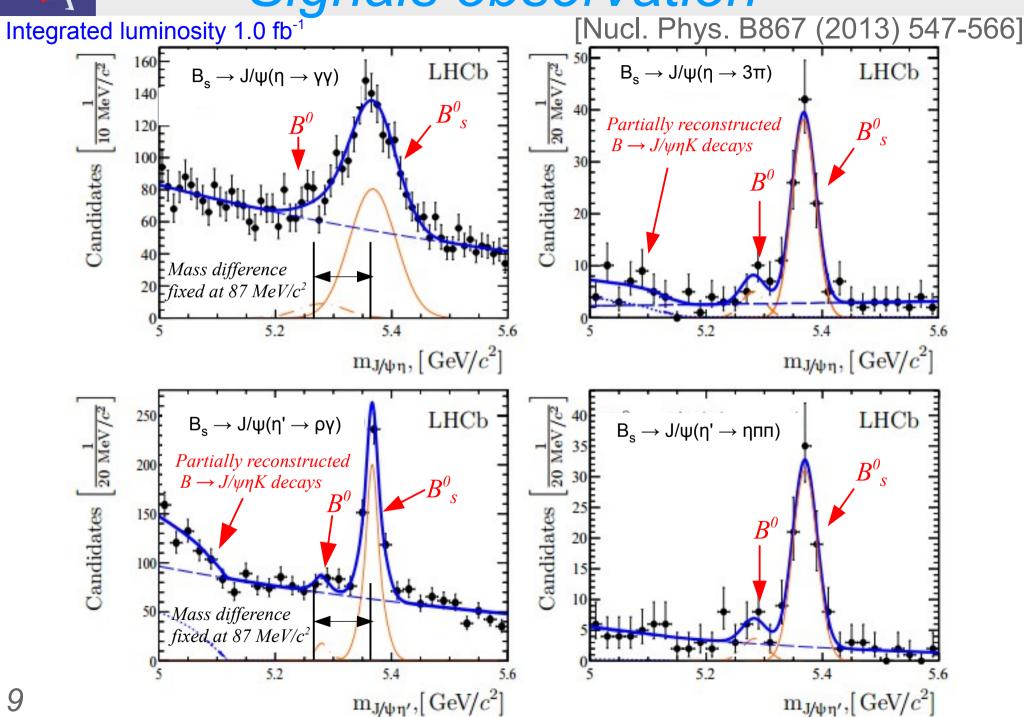
Simulation

(cross-check with data, where possible)

$$\frac{\varepsilon_{\psi Y^0}^{tot}}{\varepsilon_{\psi X^0}^{tot}} = \frac{\varepsilon_{\psi Y^0}^{acc\&gen}}{\varepsilon_{\psi X^0}^{acc\&gen}} \times \frac{\varepsilon_{\psi Y^0}^{reco\&sel}}{\varepsilon_{\psi X^0}^{reco\&sel}} \times \frac{\varepsilon_{\psi Y^0}^{trig}}{\varepsilon_{\psi X^0}^{trig}} \times \boxed{\eta^{corr}}$$

The final result is obtained by averaging between the various η and η' modes

Photon correction


To compencate the difference between the simulation and the data

$$\eta_{\pi^0}^{corr} = \frac{N^{\mathrm{B}^+ \to \mathrm{J/\psi} \left(\mathrm{K}^{*+} \to \mathrm{K}^+ \pi^0\right)}}{N^{\mathrm{B}^+ \to \mathrm{J/\psi} \, \mathrm{K}^+}} \times \frac{\varepsilon_{\mathrm{B}^+ \to \mathrm{J/\psi} \, \mathrm{K}^+}^{\mathrm{MC}}}{\varepsilon_{\mathrm{B}^+ \to \mathrm{J/\psi} \, (\mathrm{K}^{*+} \to \mathrm{K}^+ \pi^0)}^{\mathrm{MC}}} \times \frac{\mathcal{B} \left(\mathrm{B}^+ \to \mathrm{J/\psi} \, \mathrm{K}^+\right)}{\mathcal{B} \left(\mathrm{B}^+ \to \mathrm{J/\psi} \, (\mathrm{K}^{*+} \to \mathrm{K}^+ \pi^0)\right)},$$

$$B \rightarrow J/\psi \eta^{(\prime)} decays$$

Signals observation

Fit results

For the B_s signals

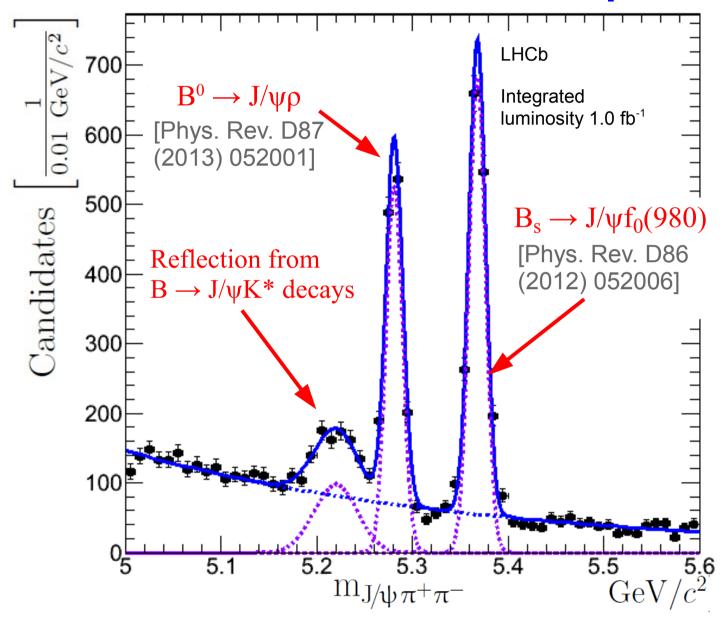
Mode	$\mathcal{Y}_{\mathrm{B_{\mathrm{s}}^{0}}}$	${ m m_{B_s^0}} \ { m [MeV}/c^2 { m]}$	$\sigma_{ m B_s^0} \ \left[{ m MeV}/c^2 ight]$	$\sigma_{ m B_s^0}^{ m MC} \ \left[{ m MeV}/c^2 ight]$	$\mathcal{S}_{\mathrm{B_{\mathrm{s}}^0}}$
$\overline{\mathrm{J/}\psi\eta}$ $\eta o\gamma\gamma$	810 ± 65	5367 ± 4	40.1 ± 3.6	38.5 ± 0.6	15.7σ
$J/\psi \eta \\ \eta \to \pi^+\pi^-\pi$	_c 0 94 ± 11	5368 ± 3	20.3 ± 2.3	17.6 ± 0.4	7.0σ
$\stackrel{\cdot}{\mathrm{J/}}\!$	336 ± 30	5367 ± 1	8.0 ± 1.1	5.1 ± 0.6	12.2σ
$J/\psi \eta'$ $\eta' o \pi^+\pi^- \eta'$	79 ± 10	5369 ± 3	20.7 ± 2.3	16.4 ± 0.4	10.5σ

Signal positions

In agreement with the PDG value

Signal resolutions
In agreement with the expectation from the simulation

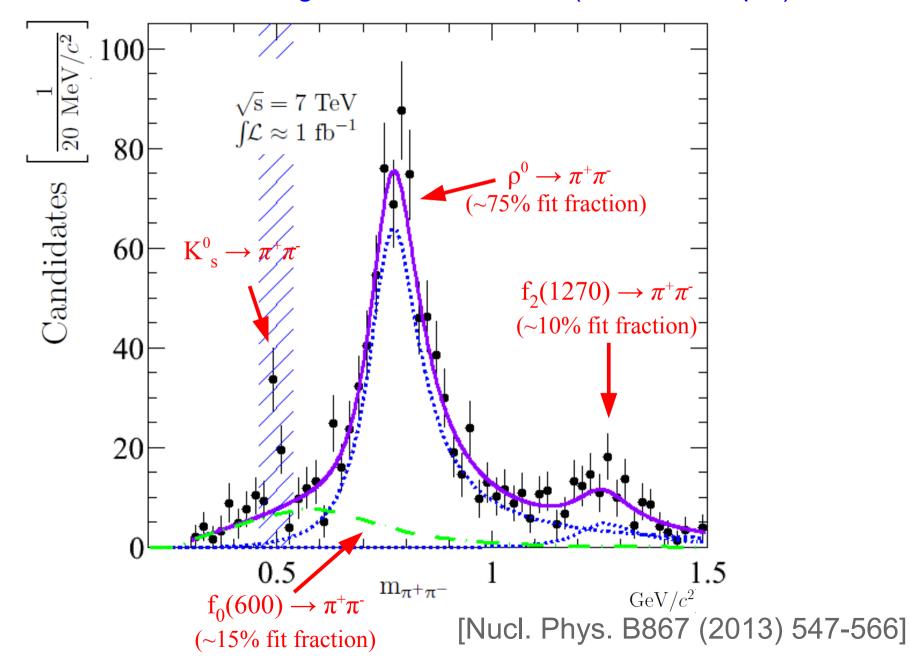
Signal significances


$$S = \sqrt{-2 \times \ln \frac{\mathcal{L}_{\mathcal{B}}}{\mathcal{L}_{\mathcal{S}+\mathcal{B}}}},$$

The normalization channel $B^0 \rightarrow J/\psi \rho^0$

$B_{d,s} \rightarrow J/\psi \pi^+ \pi^-$

Wide π⁺π⁻ invariant mass window [300; 1500] MeV/c²

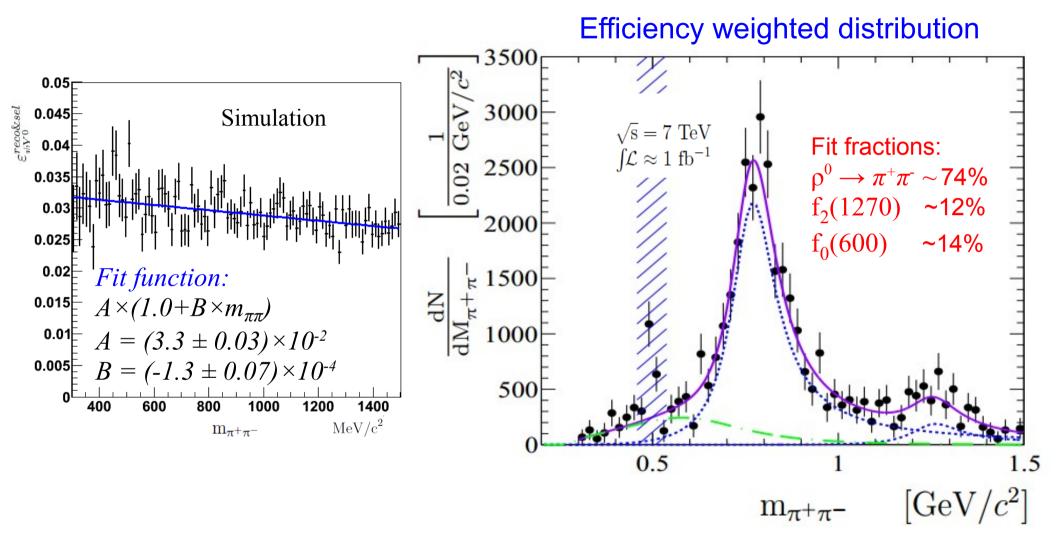


$$N_{Bs} = 1484 \pm 43$$

 $M_{Bs} = 5368 \pm 2$
 $\sigma_{Bs} = 8.7 \pm 0.2$

$$N_{Bd} = 1143 \pm 39$$

 $M_{Bd} = 5281 \pm 2$
 $\sigma_{Bd} = 8.7 \pm 0.2$


$B^0 \rightarrow J/\psi \pi^+ \pi^- : \pi^+ \pi^- invariant mass$

The combinatorial background is subtracted (sPlot technique)

Reconstruction and selection efficiency

[Nucl. Phys. B867 (2013) 547-566]

Branching fractions ratio

Reconstruction and selection efficiency is already taken into account

Only geometrical and trigger efficiencies are included

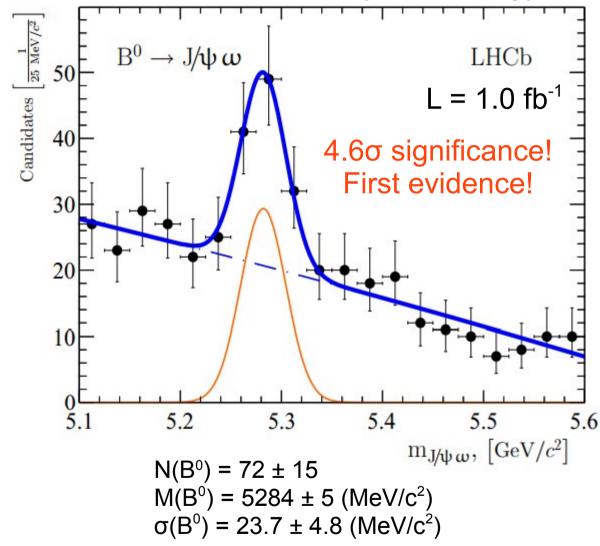
Branching fractions ratio

After averaging between various modes of η and η' modes

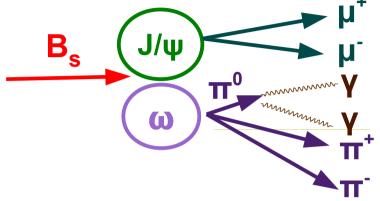
$$\mathcal{R}_{\mathrm{B}_{\mathrm{s}}^{0},\eta'}^{\mathrm{B}_{\mathrm{s}}^{0},\eta'} = 0.90 \pm 0.09^{+0.06}_{-0.02},$$

$$\mathcal{R}_{\mathrm{B}_{\mathrm{s}}^{0},\rho^{0}}^{\mathrm{B}_{\mathrm{s}}^{0},\eta} = 3.75 \pm 0.31^{+0.30}_{-0.40} \times \left(\frac{f_{\mathrm{d}}}{f_{\mathrm{s}}}\right)$$

$$\mathcal{R}_{\mathrm{B}_{\mathrm{s}}^{0},\rho^{0}}^{\mathrm{B}_{\mathrm{s}}^{0},\eta'} = 3.38 \pm 0.30^{+0.14}_{-0.36} \times \left(\frac{f_{\mathrm{d}}}{f_{\mathrm{s}}}\right)$$

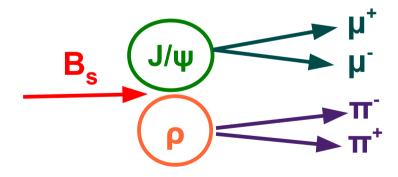

Systematical uncertainties include:

- uncertainty of the photon efficiency correction;
- charged pions reconstruction efficiency;
- trigger efficiency uncertainty;
- data fit uncertainty;
- intermediate resonances (η, η', π⁰) decays branching fractions uncertainties.



$B^0 \rightarrow J/\psi(\omega^0 \rightarrow \pi^0\pi^+\pi^-)$

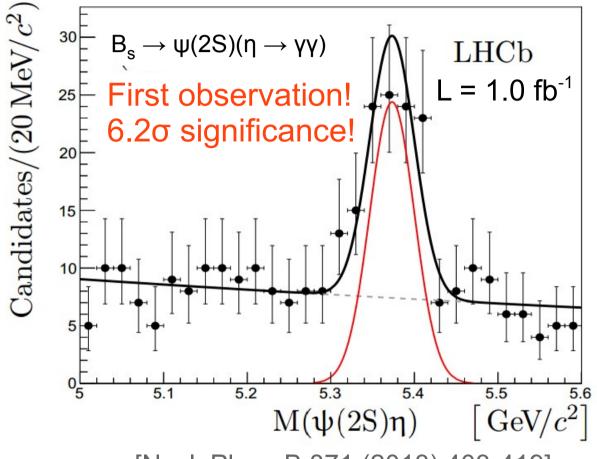
Quite similar analysis strategy



Reconstructed decay mode

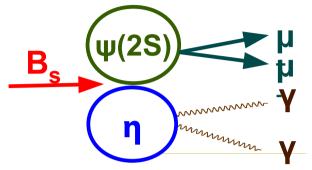
$$BR(\omega \!\!\to \pi^{\scriptscriptstyle +}\!\pi^{\scriptscriptstyle -}\!(\pi^0 \to \gamma\gamma)) = (89.2 \pm 0.7)\%$$

Normalization channel

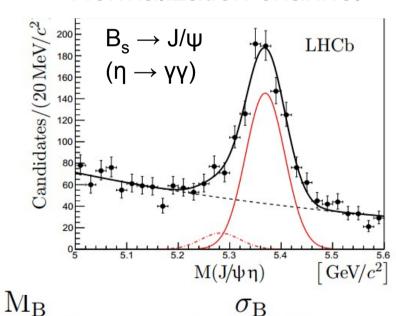

$$\mathcal{B}(B^0 \to J/\psi \,\omega) = (2.41 \pm 0.52(stat)^{+0.19}_{-0.35}(syst) \pm 0.36(\mathcal{B}_{B^0 \to J/\psi \,\rho^0})) \times 10^{-5}$$

[Nucl. Phys. B867 (2013) 547-566]

The $B_s \rightarrow \psi(2S)\eta$ decay



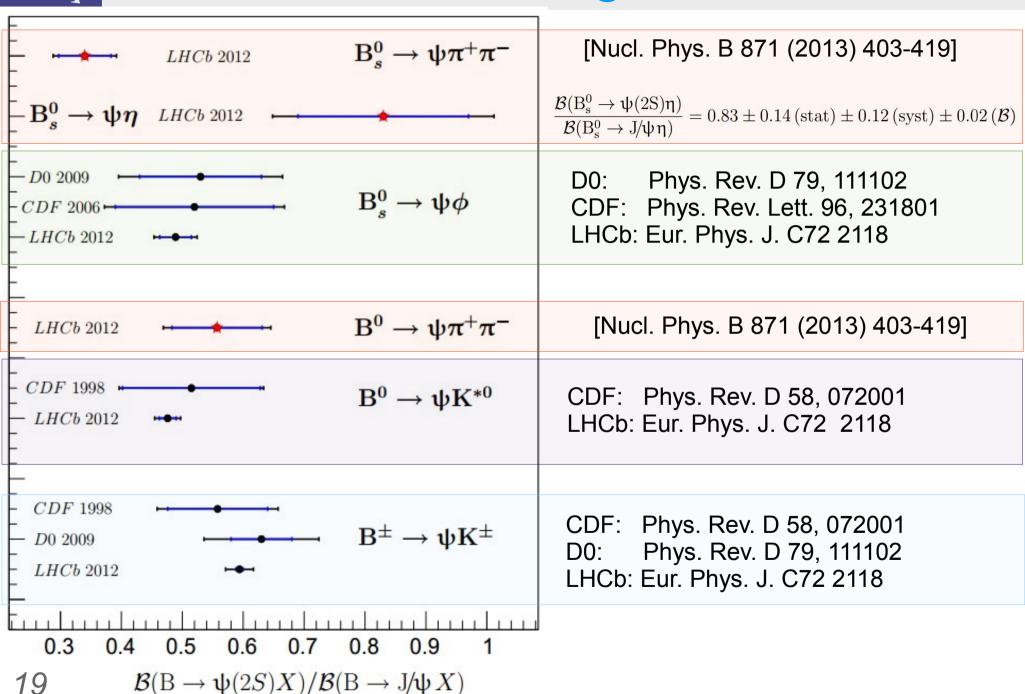
[Nucl. Phys. B 871 (2013) 403-419]


Mode $N_{\rm B}$ $\begin{array}{ccc}
 & & & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\$

 $\frac{[\text{MeV}/c^2]}{5370.9 \pm 2.3}$ 5373.4 ± 5.0

Reconstructed decay mode

Normalization channel



 $\frac{\sigma_{\rm B}}{\left[\,\text{MeV}/c^2\right]}$ 33.7 ± 2.3

26.6 fixed

Ratio of branching fractions

Summary

With 1.0 fb⁻¹ of data collected by the LHCb experiment in 2011

The $B_s \to J/\psi \eta$ and $B_s \to J/\psi \eta'$ decays are observed and their branching fractions are measured

$$\mathcal{B}(B_{s}^{0} \to J/\psi \eta) = \left(3.79 \pm 0.31(stat)^{+0.20}_{-0.41}(syst) \pm 0.56(\mathcal{B}_{B^{0} \to J/\psi \rho^{0}})^{+0.29}_{-0.27} \left(\frac{f_{d}}{f_{s}}\right)\right) \times 10^{-4}$$

$$\mathcal{B}(B_{s}^{0} \to J/\psi \eta') = \left(3.42 \pm 0.30(stat)^{+0.14}_{-0.35}(syst) \pm 0.51(\mathcal{B}_{B^{0} \to J/\psi \rho^{0}})^{+0.26}_{-0.25} \left(\frac{f_{d}}{f_{s}}\right)\right) \times 10^{-4}$$

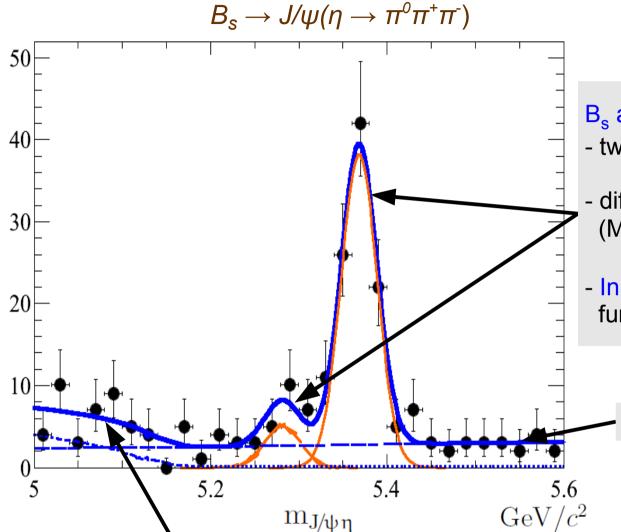
As well as the ratio of their branching fractions:

$$\frac{\mathcal{B}(B_s^0 \to J\!/\!\psi\,\eta')}{\mathcal{B}(B_s^0 \to J\!/\!\psi\,\eta)} = 0.90 \pm 0.09 (stat) ^{+0.06}_{-0.02} (syst)$$

All the values are in a agreement with both Belle measurements and the theoretical prediction First evidence of the $B^0 \to J/\psi\omega$ decay is found and its branching fraction is measured

$$\mathcal{B}(B^0 \to J/\psi \omega) = (2.41 \pm 0.52(\text{stat})^{+0.19}_{-0.35}(\text{syst}) \pm 0.36(\mathcal{B}_{B^0 \to J/\psi \rho^0})) \times 10^{-5}$$

[Nucl. Phys. B867 (2013) 547-566]


The $B_s \to \psi(2S)\eta$ decay is observed for the first time and the ratio of branching fractions is measured:

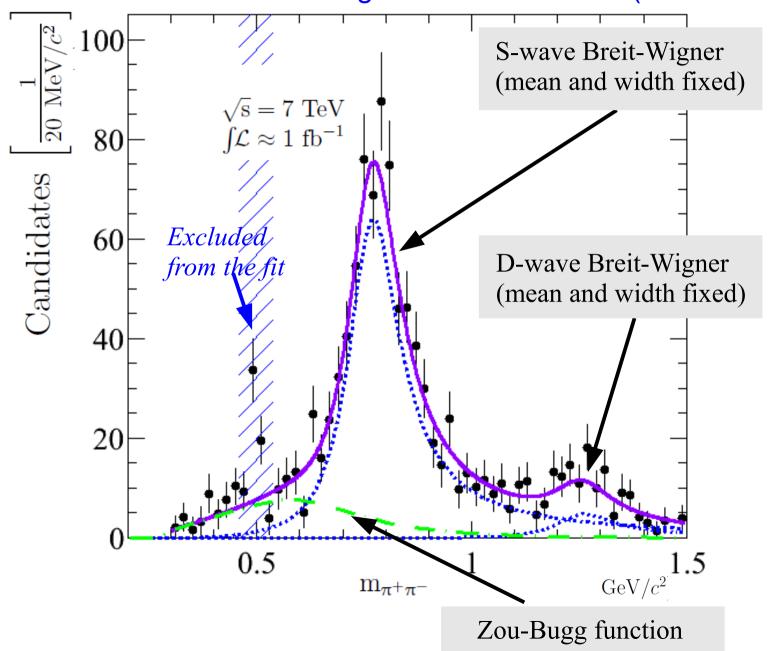
$$\frac{\mathcal{B}(B_s^0 \to \psi(2S)\eta)}{\mathcal{B}(B_s^0 \to J/\psi\eta)} = 0.83 \pm 0.14 \,(\mathrm{stat}) \pm 0.12 \,(\mathrm{syst}) \pm 0.02 \,(\mathcal{B})$$

[Nucl. Phys. B 871 (2013) 403-419]

Backup

Fit strategy

B_s and B⁰ signals


- two Gauss functions with same resolutions
- difference between mean values is fixed $(M_{Bs} M_{Bd}) = 87 \text{ MeV/c}^2$;
- In the J/ψη'(η' \rightarrow ρ⁰γ) case 2 Gaussian functions are used for each peak.

Exponential background

Partially reconstructed background is described with the phase space function under assumption of the B \rightarrow J/ $\psi\eta$ K decay contribution, in case when kaon has escaped reconstruction.

$B^0 \rightarrow J/\psi \pi^+ \pi^-$: π⁺π⁻ invariant mass

The combinatorial background is subtracted (sPlot technique)

