Light field integration in SUGRA theories

Diego Gallego

Universidad Pedagógica y Tecnológica de Colombia (UPTC)

Based on arXiv:1301.6177

SUSY2013, The Abdus Salam ICTP 30 August 2013... 5th Ariel's birthday!

Effective descriptions and symmetries

- Effective theories \Rightarrow neat descriptions.
- Symmetries \Rightarrow robust predictions, and simpler.

One might like to have effective descriptions holding special symmetries of the original theory!

Like in string moduli stabilization scenarios.

Effective descriptions and symmetries

- Effective theories \Rightarrow neat descriptions.
- Symmetries \Rightarrow robust predictions, and simpler.

One might like to have effective descriptions holding special symmetries of the original theory!

Like in string moduli stabilization scenarios.

How to get rid of the extra degrees of freedom in order to remain with a $\mathcal{N}=1$ 4D SUGRA theory?

Can this procedure be done on light fields?

Light field integration in SUGRA theories

Effective descriptions and symmetries

- Effective theories \Rightarrow neat descriptions.
- Symmetries \Rightarrow robust predictions, and simpler.

One might like to have effective descriptions holding special symmetries of the original theory!

Like in string moduli stabilization scenarios.

How to get rid of the extra degrees of freedom in order to remain with a ${\cal N}=1$ 4D SUGRA theory?

Can this procedure be done on light fields?

How and under which conditions it is possible to integrate out light fields and obtain a two derivative SUGRA theory?

D. Gallego (UPTC)

Light field integration in SUGRA theories

Integration of fields

In a theory with two modes, the dynamics for the L are dictated by $S_{Eff}(L)$,

$$e^{iS_{Eff}(L)} = \int \mathcal{D}H e^{iS(L,H)}$$

Integration of fields

In a theory with two modes, the dynamics for the L are dictated by $S_{Eff}(L)$,

$$e^{iS_{Eff}(L)} = \int \mathcal{D}H e^{iS(L,H)} = e^{iS(L,H^0)} \int \mathcal{D}(\delta H) e^{i\frac{\delta^2 S(L,H)}{\delta H \delta H} \delta H \delta H + \cdots}$$

with δH fluctuations around the classical solution $\frac{\delta S}{\delta H}\Big|_{H=H^0} = 0.$

Integration of fields

In a theory with two modes, the dynamics for the L are dictated by $S_{Eff}(L)$,

$$e^{iS_{Eff}(L)} = \int \mathcal{D}H e^{iS(L,H)} = e^{iS(L,H^0)} \int \mathcal{D}(\delta H) e^{i\frac{\delta^2 S(L,H)}{\delta H \delta H} \delta H \delta H + \cdots}$$

with δH fluctuations around the classical solution $\frac{\delta S}{\delta H}\Big|_{H=H^0} = 0$. The quantum corrections can be neglected if:

- The *H* are very heavy (hierarchy).
- The two modes are decoupled.

Then

$$S_{Eff}(L)=S(L,H^0(L))$$
 .

and the Lagrangian has the structure

$$\mathcal{L}_{eff}(L) = \mathcal{L}(L, H^0(L)) = \sum_i rac{c_i}{\Lambda^{d_i-4}} \mathcal{O}_i(L).$$

Higher order operators can be neglected if $\Lambda \sim M_H$ is large or if the corresponding Wilson coefficients, c_i 's, are small.

D. Gallego (UPTC)

Light field integration in SUGRA theories

Two derivative truncation

Usually the kinetic term is truncated at the two derivative level,

$$rac{\delta \mathcal{L}}{\delta H} = \mathbf{0}
ightarrow rac{\delta V}{\delta H} = \mathbf{0} \,,$$

but allowing any order in the fields.

Two derivative truncation

Usually the kinetic term is truncated at the two derivative level,

$$rac{\delta \mathcal{L}}{\delta H} = \mathbf{0}
ightarrow rac{\delta V}{\delta H} = \mathbf{0} \, ,$$

but allowing any order in the fields.

SUSY case

This procedure is inconsistent with SUSY, if preserved,

$$\delta_{\epsilon}\phi\sim\epsilon\phi\,,\quad \delta_{\epsilon}\psi\sim\partial\!\!\!/\phi\epsilon-\frac{1}{2}\epsilon F\,,\quad \delta_{\epsilon}F\sim\epsilon\,\partial\!\!/\psi\,.$$

A parallel truncation in spinor and auxiliary fields is required!

Supersymmetry

Generic two-derivative Lagrangian, H and L superfields

$$\mathcal{L} = \int d^2 \theta d^2 \overline{\theta} K(L, H, \overline{L}, \overline{H}) + \int d^2 \theta W(L, H) + h.c.,$$

then, using $\int d^2 \bar{\theta} = -\frac{1}{4} \overline{\mathcal{D}}^2$, \mathcal{D} the SUSY covariant derivative

$$\partial_{H}\mathcal{L}(L,H) = \partial_{H}W - \frac{1}{4}\overline{\mathcal{D}}^{2}\left(\partial_{H}K(L,H,\overline{L},\overline{H})\right) = 0$$

5/10

Supersymmetry

Generic two-derivative Lagrangian, H and L superfields

$$\mathcal{L} = \int d^2\theta d^2\bar{\theta} K(L, H, \bar{L}, \bar{H}) + \int d^2\theta W(L, H) + h.c.,$$

then, using $\int d^2 \bar{\theta} = -\frac{1}{4} \overline{\mathcal{D}}^2$, \mathcal{D} the SUSY covariant derivative

$$\partial_H \mathcal{L}(L,H) = \partial_H W - \frac{1}{4}\overline{\mathcal{D}}^2 \left(\partial_H K(L,H,\overline{L},\overline{H})\right) = 0.$$

SUSY two-derivative effective description

In general

$$H=H(L,\overline{L},\mathcal{D}L,\overline{\mathcal{D}L})\,,$$

namely, the resulting theory

- cannot be cast to a two derivative SUSY.
- in particular, SUSY is broken.

[Brizi et al. '09]

Supersymmetry

Generic two-derivative Lagrangian, H and L superfields

$$\mathcal{L} = \int d^2\theta d^2\bar{\theta} K(L,H,\overline{L},\overline{H}) + \int d^2\theta W(L,H) + h.c.\,,$$

then, using $\int d^2 \bar{\theta} = -\frac{1}{4} \overline{\mathcal{D}}^2$, \mathcal{D} the SUSY covariant derivative

$$\partial_H \mathcal{L}(L,H) = \partial_H W - \frac{1}{4}\overline{\mathcal{D}}^2 \left(\partial_H K(L,H,\overline{L},\overline{H})\right) = 0.$$

SUSY two-derivative effective description

In general

$$H=H(L,\overline{L},\mathcal{D}L,\overline{\mathcal{D}L})\,,$$

namely, the resulting theory

- cannot be cast to a two derivative SUSY.
- in particular, SUSY is broken.

A reliable truncation imply negligible \mathcal{D} 's!

D. Gallego (UPTC)

[Brizi et al. '09]

Rigid Supersymmetry two-derivative description

Heavy *H* fields [N. Arkani-Hamed et al. '98,Choi et al. '09, DG & Serone '09, Brizi et al. '09]

With mass $m_H \sim \partial_H^2 W$ the solution can be written as

$$H(L) = H^o(L) + \Delta H$$
, $\Delta H \sim \mathcal{O}(\mathcal{D}^2 L/m_H)$,

 $H^{o}(L)$ solution to $\partial_{H}W = 0$. Similar for SUGRA!

Rigid Supersymmetry two-derivative description

Heavy H fields [N. Arkan

[N. Arkani-Hamed et al. '98, Choi et al. '09, DG & Serone '09, Brizi et al. '09]

With mass $m_H \sim \partial_H^2 W$ the solution can be written as

$$H(L) = H^o(L) + \Delta H$$
, $\Delta H \sim \mathcal{O}(\mathcal{D}^2 L/m_H)$,

 $H^{o}(L)$ solution to $\partial_{H}W = 0$. Similar for SUGRA!

Decoupled sectors

Decoupling, no hierarchy, is realized for

$$W = W_H(H) + W_L(L), \quad K = K_H(H,\overline{H}) + K_L(L,\overline{L}).$$

However, ΔH is not small in general, only for ϕ_H^o slowly varying

$$\partial_H W|_{H^\circ \text{slow}} = 0 \to \partial_H \mathcal{L}(L, H) = \partial_H W - \frac{1}{4}\overline{\mathcal{D}}^2 \left(\partial_H \mathcal{K}_H(H, \overline{H})\right) \approx 0.$$

Rigid Supersymmetry two-derivative description

Heavy *H* fields

[N. Arkani-Hamed et al. '98, Choi et al. '09, DG & Serone '09, Brizi et al. '09]

With mass $m_H \sim \partial_H^2 W$ the solution can be written as

$$H(L) = H^o(L) + \Delta H$$
, $\Delta H \sim \mathcal{O}(\mathcal{D}^2 L/m_H)$,

 $H^{o}(L)$ solution to $\partial_{H}W = 0$. Similar for SUGRA!

Decoupled sectors

Decoupling, no hierarchy, is realized for

$$W = W_H(H) + W_L(L), \quad K = K_H(H,\overline{H}) + K_L(L,\overline{L}).$$

However, ΔH is not small in general, only for ϕ_H^o slowly varying

$$\partial_H W \big|_{H^o \operatorname{slow}} = 0 \to \partial_H \mathcal{L}(L, H) = \partial_H W - \frac{1}{4} \overline{\mathcal{D}}^2 \left(\partial_H \mathcal{K}_H(H, \overline{H}) \right) \approx 0.$$

Slowly varying solutions to $\partial_H W = 0$ match the ones of the full equation of motion and preserve SUSY!

D. Gallego (UPTC)

Light field integration in SUGRA theories

SUSY2013, ICTP 6 / 10

Supergravity

Generic two-derivative Lagrangian, $G = K + \ln |W|^2$, [Ferrara et al. '82, Kugo et al. '83]

$$\mathcal{L}=-3\int d^2 heta d^2ar{ heta} e^{-G/3}\Phiar{\Phi}+\int d^2 heta \Phi^3+h.c.+\cdots,$$

Φ compensator superfield and the ··· stand for gravity multiplet terms.

Supergravity

Generic two-derivative Lagrangian, $G = K + \ln |W|^2$, [Ferrara et al. '82, Kugo et al. '83]

$$\mathcal{L} = -3\int d^2\theta d^2ar{ heta} e^{-G/3}\Phiar{\Phi} + \int d^2 heta \Phi^3 + h.c. + \cdots,$$

Φ compensator superfield and the ··· stand for gravity multiplet terms. Some decoupling, no hierarchy, is realized for [Achucarro et al. '08, DG & Serone '09, DG '11]

$$G = G_H(H,\overline{H}) + G_L(L,\overline{L}),$$

such that the e.o.m. reads

$$\partial_{H}\mathbf{G}_{H}\mathcal{D}^{2}\left(\mathbf{e}^{-G/3}\bar{\Phi}
ight)+\mathcal{O}\left(\overline{\mathcal{D}H}
ight)=\mathbf{0}\,.$$

Supergravity

Generic two-derivative Lagrangian, $G = K + \ln |W|^2$, [Ferrara et al. '82, Kugo et al. '83]

$$\mathcal{L} = -3\int d^2\theta d^2ar{ heta} e^{-G/3}\Phiar{\Phi} + \int d^2 heta \Phi^3 + h.c. + \cdots,$$

Φ compensator superfield and the ··· stand for gravity multiplet terms. Some decoupling, no hierarchy, is realized for [Achucarro et al. '08, DG & Serone '09, DG '11]

$$G = G_H(H,\overline{H}) + G_L(L,\overline{L}),$$

such that the e.o.m. reads

$$\partial_{\mathsf{H}}\mathbf{G}_{\mathsf{H}}\mathcal{D}^{2}\left(\mathbf{e}^{-G/3}\bar{\Phi}\right) + \mathcal{O}\left(\overline{\mathcal{D}}\overline{\mathcal{H}}\right) = \mathbf{0}\,.$$

Then slow varying solutions for

$$\partial_H G = 0$$
 if slow varying $\Rightarrow DH = 0$

match the ones of the original equation of motion and preserve SUSY.

A two-derivative SUGRA description is obtained!

D. Gallego (UPTC)

Gauge symmetries

Hidden sector with its own gauge interactions

$$G = G_{H}(H, \overline{H}, V_{H}^{r}) + G_{L}(L, \overline{L}, V_{L}^{a}),$$
$$\mathcal{L}_{gau-kin} = \frac{1}{4} \int d\theta^{2} (f_{rs} \mathcal{W}^{r} \cdot \mathcal{W}^{s} + f_{ab} \mathcal{W}^{a} \cdot \mathcal{W}^{b}) + h.c.$$

with $\mathcal{W}_{\alpha} \sim \overline{\mathcal{D}}^2 \left(e^{-V} \mathcal{D}_{\alpha} e^{V} \right), f_{rs} = f(H) + \tilde{f}_H(H, L), f_{ab} = f_L(L) + \tilde{f}_L(H, L).$

Then the full hidden sector is integrated out through

$$\begin{split} \partial_{H} \mathbf{G} \, \mathcal{D}^{2} \left(e^{-G/3} \bar{\Phi} \right) &+ \mathcal{O}(\mathcal{D}H, \mathcal{D}V_{H}^{r}) + \mathcal{O}(\partial_{H} \tilde{f}_{L} \mathcal{D}V_{L}^{a}) = 0 \,, \\ (\partial_{V_{H}^{r}} \mathbf{G}) e^{-G/3} \bar{\Phi} \Phi &+ \mathcal{O}(\mathcal{D}H, \mathcal{D}V_{H}^{r}) + \mathcal{O}(\partial_{H} \tilde{f}_{H} \mathcal{D}L) = 0 \,, \end{split}$$

Gauge symmetries

Hidden sector with its own gauge interactions

$$G = G_{H}(H, \overline{H}, V_{H}^{r}) + G_{L}(L, \overline{L}, V_{L}^{a}),$$
$$\mathcal{L}_{gau-kin} = \frac{1}{4} \int d\theta^{2} (f_{rs} \mathcal{W}^{r} \cdot \mathcal{W}^{s} + f_{ab} \mathcal{W}^{a} \cdot \mathcal{W}^{b}) + h.c.$$

with $W_{\alpha} \sim \overline{\mathcal{D}}^2 \left(e^{-V} \mathcal{D}_{\alpha} e^V \right), f_{rs} = f(H)$, $f_{ab} = f_L(L)$

Then the full hidden sector is integrated out through

$$\begin{split} \partial_{H}G\mathcal{D}^{2}\left(e^{-G/3}\bar{\Phi}\right) + \mathcal{O}(\mathcal{D}H,\mathcal{D}V_{H}^{r}) &= 0\,,\\ (\partial_{V_{H}^{r}}G)e^{-G/3}\bar{\Phi}\Phi + \mathcal{O}(\mathcal{D}H,\mathcal{D}V_{H}^{r}) &= 0\,, \end{split}$$

with approximated SUSY slow varying solutions

$$\partial_H G = 0$$
, and $\partial_{V_H^r} G = 0$.

.

• Although the e.o.m. $\partial_H G = 0$ is not chiral, at leading order is consistent with chiral solutions.

- Although the e.o.m. $\partial_H G = 0$ is not chiral, at leading order is consistent with chiral solutions.
- Gravity terms are dictated by superconformal covariance then fixed by the indeed present symmetries.

- Although the e.o.m. $\partial_H G = 0$ is not chiral, at leading order is consistent with chiral solutions.
- Gravity terms are dictated by superconformal covariance then fixed by the indeed present symmetries.
- Gauge fixing of the conformal symmetries in superspace [Cheung '11]

$$\Phi \equiv e^{Z/3}(1+\theta^2 U), \text{ with } Z = \langle G \rangle + \langle \partial_H G \rangle H + \langle \partial_L G \rangle L.$$

The integrated fields are irrelevant in the fixing.

9/10

- Although the e.o.m. $\partial_H G = 0$ is not chiral, at leading order is consistent with chiral solutions.
- Gravity terms are dictated by superconformal covariance then fixed by the indeed present symmetries.
- Gauge fixing of the conformal symmetries in superspace [Cheung '11]

$$\Phi \equiv e^{Z/3}(1 + \theta^2 U), \text{ with } Z = \langle G \rangle + \langle \partial_H G \rangle H + \langle \partial_L G \rangle L.$$

The integrated fields are irrelevant in the fixing.

The analysis can be generalized by adding a small mix

$$G_{mix}(L,H) \sim \epsilon, \quad \frac{\partial f_L}{\partial H} \sim \epsilon, \quad \frac{\partial f_H}{\partial L} \sim \epsilon.$$

Then if $\partial_{\mu}\phi \sim \epsilon$, the corrections are small.

- Although the e.o.m. $\partial_H G = 0$ is not chiral, at leading order is consistent with chiral solutions.
- Gravity terms are dictated by superconformal covariance then fixed by the indeed present symmetries.
- Gauge fixing of the conformal symmetries in superspace [Cheung '11]

$$\Phi \equiv e^{Z/3}(1 + \theta^2 U), \text{ with } Z = \langle G \rangle + \langle \partial_H G \rangle H + \langle \partial_L G \rangle L.$$

The integrated fields are irrelevant in the fixing.

• The analysis can be generalized by adding a small mix

$$G_{mix}(L,H) \sim \epsilon, \quad \frac{\partial f_L}{\partial H} \sim \epsilon, \quad \frac{\partial f_H}{\partial L} \sim \epsilon.$$

Then if $\partial_{\mu}\phi \sim \epsilon$, the corrections are small.

• The form of *G* guarantees no restriction on the H mass if these are stabilized at nearly SUSY points.

Light field integration in SUGRA theories

A reliable effective two-derivative SUGRA theory is possible even when the integrated fields are light if: The theory has a factorizable *G*,i.e.,

$$G = G_H(H,\overline{H}) + G_L(L,\overline{L}) + \epsilon G_{mix}(H,L,\overline{H},\overline{L}),$$

e.g., in Large volume scenarios, but restricting to slow varying H field configurations, solving

$$\partial_H G = 0$$
.

The integrated fields can be charged under a hidden gauge sector and the hidden gauge sector are also integrated by the superspace promotion of the D-flatness condition.