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1 Introduction

Our purpose here is to extend the study of [1, 2] to the case with fundamental fermions. This

is closer to the real world QCD compared to those studies, and hence of some interest.

2 Quarks with Dirac mass

We begin with our naive expectations, starting with adding massive quark supermultiplets.

We generalize the setup of Ref. [2] by adding N
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The theme of this talk:

While the LHC vigorously continues search of SUSY 

       - and may or may not see evidence for it -

the development I will describe is an(other) example 
of how ideas initially found in string theory and 
supersymmetry improve our understanding of 
“ordinary” non-SUSY gauge dynamics.



It is well known that Yang-Mills theories, when “heated up” 
- by hadron collisions, by the Big Bang, or in someone’s computer - 
exhibit a deconfinement transition to a plasma of gluons and 
quarks.  The transition occurs at T of order the strong scale and 
is thus hard to study analytically. 

The recently found Higgs explains “origin of mass”- yet, 
>90% of the mass visible to us is, instead, due to the 
strong interactions. These exhibit the surprising  
behavior of confining quarks and gluons.

Numerical experiment - lattice - works. 

Models are widely used, but dangers lurk
-“voodoo QCD”, i.e., you don’t a priori know how far/when to trust - 
and any controlled analytical insight into the mechanism 
behind the deconfinement transition is of interest...

*

*As surprising as a 40 year old phenomenon can be.



Our claim: 

Supersymmetry has something to say about  
deconfinement in non-SUSY YM theory, by providing a 
setting where a phase transition, believed to be 
continuously connected to the deconfinement 
transition, can be studied by analytical means and its 
causes understood - by pen and paper, not expensive computers or 
collisions. 

In the rest of my talk, I will attempt to give you a flavor as 
for the basis of this claim. 

Before that, however, let me enumerate the few controlled 
analytical approaches to deconfinement we know:  
 for brevity, will skip “pro-con” discussion! - these are useful: insight, stretch beyond validity... 
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gauginoR xS  compactifications of super YM with m 3 1

(non-) thermal [EP, Schaefer, Unsal 1205.0290, 1212.1238; ...]

4.
THE TOPIC OF THIS TALK!

(earlier remarks by Unsal, Yaffe 2010)
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Figure 1: The thermal deconfinement phase transition in pure Yang Mills (YM) theory can be
accessed through a non-thermal (quantum) phase transition in supersymmetric Yang Mills (SYM)
theory deformed by a gluino mass term. In the massless limit, the supersymmetric theory does not
have a phase transition. The phase transition at small-m is analytically calculable and, by decoupling,
it is connected to thermal deconfinement phase transition in pure YM theory.

fermion number operator F ,

eZSYM(L) = tr
⇥
e�LH(�1)F

⇤
(1.4)

is the supersymmetric (Witten) index and is independent of radius. In softly broken su-
persymmetric theory, however, this quantity does not have an interpretation as an index.
Consider adding a small mass for the fermion in N = 1 SYM. Eqn. (1.4) is still well-defined,
and can be interpreted as a twisted partition function. The twisted partition function is a
signed sum over the states in the bosonic and fermionic Hilbert spaces, HB and HF , according
to the Z

2

= (�1)F grading,

eZSYM(L,m) = ZB � ZF =
X

n2HB

e�LEn �
X

n2HF

e�LEn . (1.5)

This is di↵erent from the ordinary partition function, ZSYM(�,m) = ZB +ZF by the over-all
sign of the contribution of fermionic states.

The twisted partition function, despite being a non-thermal quantity for general values
of the fermion mass m, is immensely useful as a tool that continuously connects the thermal
phase transition in pure Yang Mills theory with a semi-classically calculable transition on
R3 ⇥ S1

� . A similar continuity argument at finite baryon density was made in [6]. For m 6= 0,
(1.5) should be viewed as probing the phase structure of the theory as a function of radius
L (which does not generally have an interpretation as inverse temperature). As emphasized,
the twisted partition function is manifestly non-thermal. Yet, it can be used to study aspects
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pure SYM on with periodic (supersymmetric) b.c. for gaugino 

• ZN  center symmetry, order parameter = Wilson line $

•  L> Lc:  unbroken center symmetry
                
               
             confined phase

• L < Lc:  broken center symmetry

               
              deconfined plasma phase      

�tr �n⇥ = 0

Example 1 : Yang �Mills on R3 ⇥ S1

⇥tr �n⇤ �= 0

circumference L

g(x + L) = hg(x), hN = 1

tr�(x, x + L)� h tr�(x, x + L)
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CONFINED

DECONFINED
=1/Tc

thermal deconfinement transition, 
e.g., from lattice experiment

quantum phase transition, 
Z_2  breaking

At small m,L, the transition can be studied in a theoretically controlled 
manner.  A variety of novel topological excitations and perturbative 
contributions yield competing effects, resulting in a Z_2 breaking 
transition as m/(L^2 Lambda^3) varies.  
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CONFINED

DECONFINED
=1/Tc

Conjecture that continuously connected to deconfinement in 
pure YM (will present evidence).

Mechanism behind semiclassical transition is universal, valid for all gauge 
groups, with or without center. 

At small m,L, the transition can be studied in a theoretically controlled 
manner.  A variety of novel topological excitations and perturbative 
contributions yield competing effects, resulting in a Z_2 breaking 
transition as m/(L^2 Lambda^3) varies.  

Order of transition is same as in corresponding pure YM in all cases. 

Some qualitative properties (theta-dependence of Tc), first predicted at
small-m,L have been verified in recent experiments (lattice simulations 
of pure YM). 



To get some idea of how this comes about, will need to recall two things. 

A.) order parameter for deconfinement in YM

of a genuine (thermal) deconfinement phase transition in certain limits. This is due to the
the following decoupling argument. If the mass of the fermion is infinite, or much larger than
the strong scale of N = 1 SYM, eZ(L,m) reduces to the ordinary thermal partition function
of pure Yang-Mills theory:

eZSYM(L,m)
���
m!1

=) ZYM(�) = tr[e��H ] , � ⌘ L . (1.6)

In this limit, because the heavy fermion decouples, we may identify the circumference L with
the inverse temperature �. For a heavy fermion, the choice of the boundary condition is
immaterial.

In this work, we will show that the center-symmetry changing phase transition at small m
can be computed semi-classically. In this limit the transition takes place at small L, as shown
in Figure 1. The physics of the transition is quite interesting. It is based on the competition
between topological molecules, called “neutral bions” or “center-stabilizing bions”, and semi-
classical monopole-instanton e↵ects, as well as perturbative e↵ects. We will argue that these
e↵ects are also present at large m, in the pure gauge theory, but that in this limit the e↵ect
cannot be reliably computed using semi-classical methods.

2. Mass deformation of N = 1 super-Yang-Mills on S1 ⇥ R3

2.1 Perturbation theory

Classical vacua of the theory on R3 ⇥ S1 are labeled by the expectation value of the Wilson
line

⌦ = exp


i

Z
A

4

dx
4

�
. (2.1)

When L⇤ ⌧ 1, non-zero frequency Kaluza-Klein modes are weakly coupled and may be
integrated out perturbatively. If we consider periodic boundary conditions for both the gauge
fields and the adjoint Weyl fermions, Aµ(L) = Aµ(0) and �(L) = +�(0), the one-loop e↵ective
potential for the Wilson line is [5, 7]:

V SYM

pert. [⌦,m] =
2

⇡2L4

1X

n=1


�1 +

1

2
(nLm)2K

2

(nLm)

�
|tr⌦n|2

n4

. (2.2)

Here m is the fermion mass and K
2

(z) is the modified Bessel function of the second kind,
with asymptotic behavior

K
2

(z) =

⇢
2

z2
� 1

2

+O(z2) , z ⌧ 1 ;p
⇡
2z e�z , z � 1 .

(2.3)

As the mass m ! 1, the fermions decouple regardless of their boundary conditions, and the
e↵ective potential (2.2) reduces to the pure gauge result given in (1.3), with the identification
L = �:

V SYM

pert. [⌦,m]
��
m!1 = V YM

pert.[⌦](1 +O(e�Lm)) . (2.4)
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high T - finite free energy of 
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T>>T  behavior has been understood for 30 years 
                                                               [Gross, Pisarski, Yaffe, 1981] 
high-T perturbation theory good, gives one-loop V(pert), which favors center-
broken vacuum: 

c

terms of functions with essential singularities as above, there is a sense in which (1.1) should
be seen as a double expansion, a perturbative expansion in g and a non-perturbative expansion
in e�1/g.

In this paper, we will use this double expansion to study the phase diagram of an asymp-
totically free gauge theory with strong coupling scale ⇤ on R3 ⇥ S1. In a theory without
fermions the compactification scale on the S1 circle can always be given a thermal inter-
pretation. At small S1, of size L ⌧ ⇤�1, it is well-known that such theories are amenable
to a perturbative treatment. A less widely appreciated fact is that, if certain conditions
are satisfied, such theories are also amenable to non-perturbative semi-classical studies. Let
⌦ = P exp

⇥
i
R
S1 A4

dx
4

⇤
denote the gauge holonomy (or Wilson line) in the compact direction,

which, classically, is a “flat direction”. We expect that quantum e↵ects will induce a potential
for the holonomy ⌦ of the form:

V (⌦) = V
pert.(⌦) + V

nonpert.(⌦) , (1.2)

where V
pert. is the contribution of the perturbative loop-expansion in g2 and V

nonpert.(⌦) is
a non-perturbative expansion, presumably containing terms of the form e�c/g2 . The pertur-
bative term V

pert. was initially computed in [1], and the calculation was extended to higher
order in [2–4]. Although the perturbative potential V

pert.(⌦) is by now part of the standard
books of thermal field theory, V

nonpert.(⌦) has not received as much attention.

The perturbative calculation of the e↵ective potential for the Wilson line in pure SU(N)
Yang-Mills theory on R3 ⇥ S1 with small L = � gives [1]:

V
pert.(⌦) = � 2

⇡2�4

1X

n=1

1

n4

|tr⌦n|2(1 +O(g2)), (1.3)

leading to the conclusion that at small � the theory is in a deconfined phase, with broken
center-symmetry h 1

N tr⌦i = 1. If one thinks in terms of eigenvalues of ⌦, the potential (1.3)
generates an attraction among the eigenvalues. In other words, the e↵ective mass-squared for
the Wilson line is negative.

Based on numerical simulations on the lattice we know that the deconfinement transition
in pure Yang-Mills theory takes place at a temperature of order ⇤: Td = a⇤ where a is a pure
number of order one. At one-loop order in perturbation theory, (1.3) shows that the center-
symmetry is broken. Higher order corrections do not alter this conclusion; there is no e↵ect at
any order in perturbation theory that competes with center symmetry breaking. Hence, the
phase transition must be induced by V

nonpert.(⌦). Disregarding such non-perturbative e↵ects,
one would conclude that one cannot explore the transition as the temperature is lowered,
from the deconfined to the confined phase, using weak coupling techniques.

In this work, we propose a strategy to analytically study the center-symmetry changing
phase transition in four dimensional gauge theories based on an observation discussed in [5].
The main idea, schematically shown in Figure 1, is as follows: It is well-known that N = 1
SYM with periodic boundary conditions for fermions does not have a phase transition as
a function of radius. In fact, for a supersymmetric gauge theory with Hamiltonian H and
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To get some idea of how this comes about, will need to recall two things. 

B.) SYM on R^3 x S^1 (with supersymmetric b.c.)

Davies, Hollowood, Khoze 1999
important relevant details of instanton 
calculation only recent 
EP, Schaefer, Unsal, 2012

B.1) Along Coulomb branch, where A_4 has
        a vev, breaking SU(N), the theory 
        “abelianizes”.

Seiberg,Witten 1996
Aharony, Hanany, Intriligator, Seiberg, 
Strassler 1997
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1 Introduction

Our purpose here is to extend the study of [1, 2] to the case with fundamental fermions. This

is closer to the real world QCD compared to those studies, and hence of some interest.

2 Quarks with Dirac mass

We begin with our naive expectations, starting with adding massive quark supermultiplets.

We generalize the setup of Ref. [2] by adding N

f

massive chiral super fields in the fundamental

of the gauge group (their fermionic parts constitute N

f

Dirac fundamental flavours).

2.1 Taming the perturbative contributions
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Our purpose here is to extend the study of [1, 2] to the case with fundamental fermions. This

is closer to the real world QCD compared to those studies, and hence of some interest.

2 Quarks with Dirac mass

We begin with our naive expectations, starting with adding massive quark supermultiplets.
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- 3d dual to A  = “dual photon” (potential for magnetic charge)

- deviation of A   from center symmetric value

relevant bosonic fields: A  - gauge field in compact direction -
and A  - 3d gauge field - in the unbroken U(1) of SU(2), equivalent to:
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i
4

B.2) Furthermore, at small L, the coupling is 
        weak and semiclassics applies. 
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exact superpotential, here for SU(2):    W ~ Y + 1
Y
_

the potential from W~ Y+1/Y is then  

with minimum at zero
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Our purpose here is to extend the study of [1, 2] to the case with fundamental fermions. This

is closer to the real world QCD compared to those studies, and hence of some interest.

2 Quarks with Dirac mass

We begin with our naive expectations, starting with adding massive quark supermultiplets.
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B.3) Thus, SYM on R^3 x S^1 preserves center symmetry.
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on the Coulomb branch, the two kinds of lowest-action monopole-instantons... 
best understood via D-branes
(N=4 SUSY not needed - same solutions exist even in pure YM w/ holonomy vev)
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Figure 2: The Euclidean vacuum of the small-m, L theory can be described as a plasma of monopole-
instantons (gray circles) and anti-monopole-instantons (white circles) with fermionic zero modes (un-
paired arrows). The paired events are magnetic and neutral bions. Neutral bion amplitudes generate
repulsion among the eigenvalues of the Wilson line and magnetic bions generate a mass gap for gauge
fluctuations via a generalization of the Polyakov mechanism to a locally 4d theory.

which generates the bosonic potential and the mass gap for bosonic fluctuations is due to
bions, correlated monopole-anti-monopole instantons without any fermionic zero modes. The
bosonic potential also has h_ minima, leading, at weak coupling, to the spontaneous breaking
of the discrete chiral symmetry, Z

2h_ ! Z
2

. This, in turn, generates a dynamical mass for
fermions. The importance of this point of view, apart from providing the correct interpretation
of the physical phenomena governing the dynamics in the supersymmetric theory, is that semi-
classical monopole and bion amplitudes also exist in non-supersymmetric theories, where the
bosonic potential cannot be extracted from the super-potential [2, 12–14].

1.3 Phase transition in the small m-L regime and universal aspects

There are two main e↵ects of adding a small fermion mass term. The mass term lifts the zero
modes of the monopole-instantons. This implies that there is a non-zero monopole-instanton
contribution to the bosonic potential. The mass term also breaks supersymmetry, which leads
to a perturbative contribution to the potential for the holonomy [3]. Studying the competition
between these e↵ects and the bion induced potential already present at m = 0 shows that
there is a phase transition at some critical compactification scale that grows with m. We find
a description of this phase transition valid for all Lie groups, G:

1. Neutral bions always generate repulsion among the eigenvalues of the Wilson line around
S1. For theories with a ZN center symmetry, the repulsion leads to a ZN -symmetric
distribution, while for theories without a center symmetry, it leads to a non-degenerate
distribution of eigenvalues, as we show explicitly for G

2

.
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now turn on small gaugino mass “m”:

perturbative GPY 
potential for 
holonomy shown 
before 

M: +

KK: -

m

m

small SUSY breaking “m” allows us to have perturbative and nonperturbative 
contributions compete while under theoretical control, resulting in a center-
breaking transition as             becomes O(1) (2nd order for SU(2); 1st for SU(N)...)
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1

Same objects can be identified in pure YM - but there can’t be a consistent 
semiclassical ‘fight’ between GPY and instantons there... but one can have models e.g., 
[Shuryak, Sulejmanpasic 2013 
                - instanton-liquid model (T=0 QCD vacuum) => monopole-instanton liquid model (T~T_c)]

GPY=Gross, Pisarski, Yaffe, 1981 

(assuming holds to m>O(Lambda), 1/L_c ~T_c ~ Lambda...)
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Figure 2: The Euclidean vacuum of the small-m, L theory can be described as a plasma of monopole-
instantons (gray circles) and anti-monopole-instantons (white circles) with fermionic zero modes (un-
paired arrows). The paired events are magnetic and neutral bions. Neutral bion amplitudes generate
repulsion among the eigenvalues of the Wilson line and magnetic bions generate a mass gap for gauge
fluctuations via a generalization of the Polyakov mechanism to a locally 4d theory.

which generates the bosonic potential and the mass gap for bosonic fluctuations is due to
bions, correlated monopole-anti-monopole instantons without any fermionic zero modes. The
bosonic potential also has h_ minima, leading, at weak coupling, to the spontaneous breaking
of the discrete chiral symmetry, Z

2h_ ! Z
2

. This, in turn, generates a dynamical mass for
fermions. The importance of this point of view, apart from providing the correct interpretation
of the physical phenomena governing the dynamics in the supersymmetric theory, is that semi-
classical monopole and bion amplitudes also exist in non-supersymmetric theories, where the
bosonic potential cannot be extracted from the super-potential [2, 12–14].

1.3 Phase transition in the small m-L regime and universal aspects

There are two main e↵ects of adding a small fermion mass term. The mass term lifts the zero
modes of the monopole-instantons. This implies that there is a non-zero monopole-instanton
contribution to the bosonic potential. The mass term also breaks supersymmetry, which leads
to a perturbative contribution to the potential for the holonomy [3]. Studying the competition
between these e↵ects and the bion induced potential already present at m = 0 shows that
there is a phase transition at some critical compactification scale that grows with m. We find
a description of this phase transition valid for all Lie groups, G:

1. Neutral bions always generate repulsion among the eigenvalues of the Wilson line around
S1. For theories with a ZN center symmetry, the repulsion leads to a ZN -symmetric
distribution, while for theories without a center symmetry, it leads to a non-degenerate
distribution of eigenvalues, as we show explicitly for G

2

.
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xx

neutral 
“center-stabilizing” bions:

monopole-instantons: 
-scalar interactions (likes attract)
-magnetic interactions (opposites attract)
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M +

however, Dyson stability
- center stabilizing -

negative fugacity (e.g., strange!) objects:
SUSY, BZJ [EP, Unsal 2011; Argyres, Unsal 2012] or 
excluded volume[Shuryak (‘80s) w/ Sulejmanpasic 2013]

M*-
“objects” of scalar charge 2 only, with 
negative fugacity - exclude from Z!

M*_+M

-scalar interactions only
(likes attract)



I told you how this part of the phase diagram came about.
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Figure 1: The thermal deconfinement phase transition in pure Yang Mills (YM) theory can be
accessed through a non-thermal (quantum) phase transition in supersymmetric Yang Mills (SYM)
theory deformed by a gluino mass term. In the massless limit, the supersymmetric theory does not
have a phase transition. The phase transition at small-m is analytically calculable and, by decoupling,
it is connected to thermal deconfinement phase transition in pure YM theory.

fermion number operator F ,

eZSYM(L) = tr
⇥
e�LH(�1)F

⇤
(1.4)

is the supersymmetric (Witten) index and is independent of radius. In softly broken su-
persymmetric theory, however, this quantity does not have an interpretation as an index.
Consider adding a small mass for the fermion in N = 1 SYM. Eqn. (1.4) is still well-defined,
and can be interpreted as a twisted partition function. The twisted partition function is a
signed sum over the states in the bosonic and fermionic Hilbert spaces, HB and HF , according
to the Z

2

= (�1)F grading,

eZSYM(L,m) = ZB � ZF =
X

n2HB

e�LEn �
X

n2HF

e�LEn . (1.5)

This is di↵erent from the ordinary partition function, ZSYM(�,m) = ZB +ZF by the over-all
sign of the contribution of fermionic states.

The twisted partition function, despite being a non-thermal quantity for general values
of the fermion mass m, is immensely useful as a tool that continuously connects the thermal
phase transition in pure Yang Mills theory with a semi-classically calculable transition on
R3 ⇥ S1

� . A similar continuity argument at finite baryon density was made in [6]. For m 6= 0,
(1.5) should be viewed as probing the phase structure of the theory as a function of radius
L (which does not generally have an interpretation as inverse temperature). As emphasized,
the twisted partition function is manifestly non-thermal. Yet, it can be used to study aspects
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CONFINED

DECONFINED
=1/Tc

Now, evidence in support of continuity:

- same order of transition:
          -1st order at N>2, as seen on lattice
          -1st order for G_2, as seen on lattice 
             not associated with symmetry breaking, as in real QCD with quarks 

- theta-angle dependence of transition 
   these were actually predicted - Unsal 2012; EP, Schaefer, Unsal, 2012

- disc of Polyakov loop at Tc, for Nc>2, increases with increasing       
   theta [predicted Mohamed Anber 2013] and seen on lattice

 - Tc decreases with increasing theta; seen on lattice

- same ‘universality’ (‘...’: most 1st order) class: Z_N breaking, for SU(N) 

-with massive fundamental quarks transition becomes crossover

  [D’ Elia, Negro 2012]

EP, Schaefer, Unsal, 2012 

EP, Sulejmanpasic, 2013 

  [D’ Elia, Negro 2013]
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...and gave some evidence in 
support of continuity conjecture,
most of it coming from lattice 
simulations. 

SUMMARY AND OUTLOOK: 

I told you how a (calculable) quantum and (strong) thermal phase 
transitions appear related...



       SU(2) 

2

Z1

Lc

∞

Center symmetric 

∞
   

Center broken 

L

YMSYM

0

Thermal YM  

m
non−thermal SYM with mass deformation 

Z

Figure 1: The thermal deconfinement phase transition in pure Yang Mills (YM) theory can be
accessed through a non-thermal (quantum) phase transition in supersymmetric Yang Mills (SYM)
theory deformed by a gluino mass term. In the massless limit, the supersymmetric theory does not
have a phase transition. The phase transition at small-m is analytically calculable and, by decoupling,
it is connected to thermal deconfinement phase transition in pure YM theory.

fermion number operator F ,

eZSYM(L) = tr
⇥
e�LH(�1)F

⇤
(1.4)

is the supersymmetric (Witten) index and is independent of radius. In softly broken su-
persymmetric theory, however, this quantity does not have an interpretation as an index.
Consider adding a small mass for the fermion in N = 1 SYM. Eqn. (1.4) is still well-defined,
and can be interpreted as a twisted partition function. The twisted partition function is a
signed sum over the states in the bosonic and fermionic Hilbert spaces, HB and HF , according
to the Z

2

= (�1)F grading,

eZSYM(L,m) = ZB � ZF =
X

n2HB

e�LEn �
X

n2HF

e�LEn . (1.5)

This is di↵erent from the ordinary partition function, ZSYM(�,m) = ZB +ZF by the over-all
sign of the contribution of fermionic states.

The twisted partition function, despite being a non-thermal quantity for general values
of the fermion mass m, is immensely useful as a tool that continuously connects the thermal
phase transition in pure Yang Mills theory with a semi-classically calculable transition on
R3 ⇥ S1

� . A similar continuity argument at finite baryon density was made in [6]. For m 6= 0,
(1.5) should be viewed as probing the phase structure of the theory as a function of radius
L (which does not generally have an interpretation as inverse temperature). As emphasized,
the twisted partition function is manifestly non-thermal. Yet, it can be used to study aspects

– 3 –

CONFINED

DECONFINED
=1/Tc

...and gave some evidence in 
support of continuity conjecture,
most of it coming from lattice 
simulations. 

SUMMARY AND OUTLOOK: 

I told you how a (calculable) quantum and (strong) thermal phase 
transitions appear related...

 as per lattice (also Zhitnitsky 2000, 2009)

- SYM with gaugino mass can be simulated using current                    
  technology, so phase diagram can be verified 

- lessons for models near Tc: ‘center-stabilizing bions’ due to           
  excluded volume in instanton-monopole liquid model - 
  Shuryak w/ Sulejmanpasic, Faccioli 2013... claim crude models describe lattice data on E/M mass
Recall we started from D-branes and N=4 and are now in pure-YM theory!

- pursuing calculable regime to next order in ‘m’ is possible (and fun); it is of            
   interest to understand, e.g., topological susceptibility above Tc 

What’s next? 

Things I am looking at (w/ Anber, Sulejmanpasic) 

- center symmetry does not, in general, determine universality class 
   (e.g., lattice SP(n) YM) - how does this play out here?
& generally, aiming at better understanding (Dyson?)



Back to the theme of this talk:

I described an(other) example of how ideas initially found in string 
theory and supersymmetry improve our understanding of 
“ordinary” non-SUSY gauge dynamics.

I think there’s some use of SUSY, even if not found at LHC... 
              ...hoping to be around for SUSY 20x3!


