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One can learn a lot about a theory by studying it on curved spaces

Curvature can act as a regulator and helps localize the path integral

e N =2o0n 54 [Pestun ’o7}
3 Kapustin, Willett, Yaakov ’
Many recent examples: o A — 92 on round S apusin WilletYaakov 09

Squashed 5’3 [Hama, Hosomichi, Lee '10}

[Imamura, Yokoyama 11}

In all these cases, curved geometry would break susy;
one has to deform the action by suitable terms.
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General question For a supersymmetric field theory,

on which manifold is any supersymmetry preserved?

In this talk we will see, for theories with an R-symmetry:

¢ 4d Euclidean N =1 <o complex manifold

[Klare, AT, Zaffaroni ’12}
[Dumitrescu, Festuccia, Seiberg ’12}

- manifold with a null

conformal Killing vector (CKV)
[Cassani, Klare, Martelli, AT, Zaffaroni ’12]

o 4d Lorentzian N =1

. . . [Klare, AT, Zaffaroni '12]
Similar results exist for 3d (100 AT Zaaroni ]

I will also sketch a holographic application to black holes
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e Suppose we have a flat space Lagrangian Lg,, [Festuccia, Seiberg "11]

to fix ideas: N = 1 superconformal in d = 4

* Couple it to conformal supergravity:

fields g,,,., ¥, A
Lcyrved + Lsugra\ g S
A

DN 5 )
Weyl” + (0A)*+

0, = V .
g : conformal kin. term for v,

o If we find a configuration {g,,., ¥, aux. fields}

invariant under some susy 0.

then L., .4 1s invariant under 0,

and we can make the sugra fields non-dynamical
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susy
— () parameter superconformal
o set 1, = 0;

parameter

susy transformation: 0, = Vﬁ‘e +v,m =0

VvV, —1i4A,
1 DHA
A 1 A —
$ (vu - Z/}/MD ) € — O Vﬁ(ﬁ-ﬁy) =0
Dirac _,w— A
operator 7V (charged) conformal Killing spinor {or twistor}

* Natural equation in conformal geometry:

V€ € vector ® spinor

= spinor ® 'gravitino'

De (VM — équ) €
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* The same equation can be obtained from holography.

[Klare, AT, Zaffaroni, ’12;
Balasubramanian, Gimon, Minic, Rahmfeld ’oo,

Cheng, Skenderis o5}

e \What about non-conformal theories?

Our results will apply almost verbatim
to any susy theory with R-symmetry

The reason is basically that ordinary supergravity
can be obtained by gauge-fixing conformal supergravity:.

* We will now classify conformal Killing spinors.

(V4 — 27uD?) e=0
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I1. Classification

Still 4d Euclidean N =1

e For A = 0, classification exists: [Lichnerowicz '88]
(Vp— 37.D)e=0 = € ~ e+ Deis Killing spinor"
M, = S* < V€ =7,¢€

e For A # 0, we are on our own.

Let's assume ¢ is chiral (no loss of generality)

and that it has no zeros (unlike for S%).
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e, defines an SU(2) structure:

f _ —
ELVuve4+ = Juv C+rVuv€4+ — Wy

symplectic form ‘ . ,
[Kihler if closed] holomorphic volume form

w determines an almost complex structure  [morally: w = E' A £?]
n A

(1,0)-forms

A=...
A 1 A _
n — 37D )€+—O<:> do = wAw < .a.c.s.is
integrable
for some w

[Klare, AT, Zaffaroni 12} | | |
[Dumitrescu, Festuccia, Seiberg ’12}

M, is complex



Examples



Examples

.53><Sl



Examples

e 53 x S

related by reduction

It is a complex manifold: for example think

g1 g3 72— 83 x St
o>
S2 o S
complex '

toN =2SCFTIson S 3 manifolds



Examples

o 93 x g1 It is a complex manifold: for example think
g1 > g3 72— 83 x St
. q2 S2 /
related by reduction complex
to N =2 SCFTs on S° manifolds

e Kihler manifolds
In this case holonomy is reduced to U(2) = U(1) x SU(2)

So 3 A such that .
which of course
VA 0 is also a CKS
6 p—
v + (Vﬁ — %’YMDA) €4 — 0

This kind of ‘trivial solution’ to the CKS equation
is what we usually call a twist.
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¢ On the other hand:

S* doesn't even admit an almost complex structure...

But recall: 4 CKS with zeros

S* — {north pole} =2 R? does have a complex structure.

v
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¢4 now defines an 'R structure':

.-=-=. complex
"
vector

_ _C _

lightlike

vector

2,2t =10 little group of z: SO(2) x R?
w breaks it to R?

A L [Cassani, Klare, Martelli, AT, Zaffaroni ’12]

VA — 29, D) ey =0 <>
( p o4l ) T L.gu = ag,, z is a null CKV

f
{for some o} conformal Killing vector



Similar results hold in 3d N = 2

oooooooooooooooooooooooooooooooooooooooooooooooooooooooooooooooooooooooooooooooooooooooooooooooooooooo

oooooooooooooooooooooooooooooooooooooooooooooooooooooooooooooooooooooooooooooooooooooooooooooooooooooooooooooooooooooooooooooooooooooooooo

Fuclidean complex o complex 1-form
s.t. do=w A o
. : null or
Lorentzian null CKV e CRY

ooooooooooooooooooooooooooooooooooooooooooooooooooooooooooooooooooooooooooooooooooooooooooooooooooooooooooooooooooooooooooooooooooooooooo

[Klare, AT, Zaffaroni '12}

Klare, AT, Zaff: )
[Dumitrescu, Festuccia, Seiberg 12} (Klare affaroni "2}

[Cassani, Klare, Martelli, AT, Zaffaroni 12} [Hristov, AT, Zaffaroni ’13}

[Closset, Dumitrescu, Festuccia, Komargodski, ’12}
[Closset, Dumitrescu, Festuccia, Komargodski, Shamir, to appear}

[* see also Komargodski’s talk}
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II1. Holographic application

3 — 47 A
Asymptotically AdS4 black holes ime
2 _ dr? 271 9
dsy = Tz + (ridsg, g2 + O(r))
o
boundary: a conformal theory lives here
Rxs?
bou>1<1dary black hole

We classified all null or timelike CKVs on R X S?:  (iiriscor AT Zaffaroni 5]
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[FF = d A background field-strength]

F=0 F = —Zvolg>
[z =0, + 0y, for ex.] z = 6’75 ‘twist’

~ | 4
-------

[interpolating family: z = 0; 4+ a0yl

These two cases reproduce the two empirically known

asymptotic behaviors of AdS4 BPS black holes!

[F = graviphoton field-strengthl

1
F =0 F=— §VOI g2
1/2 BPS; naked sing.! 1/4 BPS, finite horizon
L2 )
DR L [Cacciatori, Klemm ’09]}

[interpolating family: rotating BHs]
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In fact, the 1/4 BPS solutions look like

- - .
am=-==" --.-..
s”

[infinity] [near-horizon]

the field theory dual should be

twisted SCFT3 caemmemmmanll, N
. 2 SCFT R
on R x S? L on
[UV] [IR]

this would give a way to count the entropy
using the AdS2/CFT1 correspondence.

[Hristov, AT, Zaffaroni ’13}

[Hristov, Rosa, AT,
Zaffaroni, in progress!'}



Conclusions

* A supersymmetric theory (with R-symmetry, low enough susy) is
still supersymmetric on curved spaces if a CKS (or ‘twistor’) exists

* Existence of CKSs is equivalent to elegant geometrical properties

* These classification results restrict the possible asymptotic

behaviors of AdS BPS black holes
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e Actually, for higher susy a second (tougher) equation appears.

d = 4, N — ) [Klare, Zaffaroni '13}

eg. for 6N =1 also a 0\ appears.

e.g. [Samtleben,Sezgin, Tsimpis’13}

In this talk, we will keep susy low d=4 N =1
enough so that this complication ’
does not appear: d=3,N =2



line bundle

€4 1s twisted by A = section of X, @ U

= w section of K @ U? = it can exist
globally



