Supersymmetric Field Theories on Curved Spaces

Alessandro Tomasiello

SUSY 2013
Trieste

Introduction

One can learn a lot about a theory by studying it on curved spaces

Curvature can act as a regulator and helps localize the path integral

Introduction

One can learn a lot about a theory by studying it on curved spaces

Curvature can act as a regulator and helps localize the path integral

•
$$\mathcal{N}=2$$
 on S^4

[Pestun '07]

Many recent examples:

$$\bullet \mathcal{N} = 2 \text{ on }$$

round S^3

[Kapustin, Willett, Yaakov '09] [Jafferis'10]

squashed S^3

[Hama, Hosomichi, Lee '10] [Imamura, Yokoyama '11]

• • •

Introduction

One can learn a lot about a theory by studying it on curved spaces

Curvature can act as a regulator and helps localize the path integral

$$\bullet \mathcal{N} = 2 \text{ on } S^4$$

[Pestun '07]

Many recent examples:

$$\bullet \mathcal{N} = 2 \text{ on }$$

round S^3

[Kapustin, Willett, Yaakov '09] [Jafferis'10]

squashed S^3

[Hama, Hosomichi, Lee '10] [Imamura, Yokoyama '11]

• • •

In all these cases, curved geometry would break susy; one has to deform the action by suitable terms.

General question

For a supersymmetric field theory, on which manifold is any supersymmetry preserved?

General question

For a supersymmetric field theory, on which manifold is any supersymmetry preserved?

In this talk we will see, for theories with an R-symmetry:

• 4d Euclidean $\mathcal{N} = 1$ \Leftrightarrow complex manifold

[Klare, AT, Zaffaroni '12] [Dumitrescu, Festuccia, Seiberg '12]

• 4d Lorentzian $\mathcal{N}=1$

manifold with a null conformal Killing vector (CKV)

[Cassani, Klare, Martelli, AT, Zaffaroni '12]

General question

For a supersymmetric field theory, on which manifold is any supersymmetry preserved?

In this talk we will see, for theories with an R-symmetry:

• 4d Euclidean $\mathcal{N}=1$ \Leftrightarrow complex manifold

[Klare, AT, Zaffaroni '12] [Dumitrescu, Festuccia, Seiberg '12]

• 4d Lorentzian $\mathcal{N}=1$

manifold with a null conformal Killing vector (CKV)

[Cassani, Klare, Martelli, AT, Zaffaroni '12]

Similar results exist for 3d

[Klare, AT, Zaffaroni '12] [Hristov, AT, Zaffaroni '13]

I will also sketch a holographic application to black holes

Plan

- I. Strategy: coupling to supergravity
 - 2. Classification theorems
 - 3. Holographic applications

ullet Suppose we have a flat space Lagrangian L_{flat}

used systematically in [Festuccia, Seiberg '11]

to fix ideas: $\mathcal{N}=1$ superconformal in d=4

ullet Suppose we have a flat space Lagrangian L_{flat}

used systematically in [Festuccia, Seiberg '11]

to fix ideas: $\mathcal{N}=1$ superconformal in d=4

Couple it to conformal supergravity:

$$L_{\rm curved} + L_{\rm sugra} \qquad \qquad {\rm fields} \ g_{\mu\nu}, \psi_{\mu}, A_{\mu} \\ \partial_{\mu} \rightarrow \nabla_{\mu} \qquad \qquad {\rm Weyl}^2 + (\partial A)^2 + \\ {\rm conformal} \ {\rm kin. \ term \ for} \ \psi_{\mu}$$

ullet Suppose we have a flat space Lagrangian L_{flat}

used systematically in [Festuccia, Seiberg '11]

- to fix ideas: $\mathcal{N}=1$ superconformal in d=4
- Couple it to conformal supergravity:

• If we find a configuration $\{g_{\mu\nu},\psi_{\mu},$ aux. fields $\}$ invariant under some susy δ_{ϵ}

then L_{curved} is invariant under δ_{ϵ}

and we can make the sugra fields non-dynamical

• set $\psi_{\mu}=0$; susy parameter superconformal parameter susy transformation: $\delta\psi_{\mu}=\nabla_{\mu}^{A}\epsilon+\gamma_{\mu}\eta=0$ $\nabla_{\mu}-iA_{\mu}$

• set
$$\psi_{\mu}=0$$
; susy parameter superconformal parameter susy transformation: $\delta\psi_{\mu}=\nabla_{\mu}^{A}\epsilon+\gamma_{\mu}\eta=0$ $\nabla_{\mu}-iA_{\mu}$

$$\gamma^{\mu}\delta\psi_{\mu} \ \Rightarrow \ \eta = -\frac{1}{4}D^{A}\epsilon$$

$$\underset{\text{operator}}{\text{Dirac}} \gamma^{\nu}\nabla_{\nu}^{A}$$

• set
$$\psi_{\mu}=0$$
; susy parameter superconformal parameter susy transformation: $\delta\psi_{\mu}=\nabla^{A}_{\mu}\epsilon+\gamma_{\mu}\eta=0$ $\nabla_{\mu}-iA_{\mu}$

$$\gamma^{\mu}\delta\psi_{\mu} \Rightarrow \eta = -\frac{1}{4}D^{A}\epsilon$$
Dirac
 $\gamma^{\nu}\nabla_{\nu}^{A}$

$$\left(\nabla_{\mu}^{A} - \frac{1}{4}\gamma_{\mu}D^{A}\right)\epsilon = 0$$

$$\nabla_{\alpha(\dot{\beta}}^{A}\epsilon_{\dot{\gamma})} = 0$$

(charged) conformal Killing spinor [or twistor]

• set
$$\psi_{\mu}=0$$
; susy parameter superconformal parameter susy transformation: $\delta\psi_{\mu}=\nabla^{A}_{\mu}\dot{\epsilon}+\gamma_{\mu}\eta=0$ $\nabla_{\mu}-iA_{\mu}$

Natural equation in conformal geometry:

$$abla_{\mu}\epsilon \in \operatorname{vector} \otimes \operatorname{spinor}$$
 $= \operatorname{spinor} \otimes \operatorname{'gravitino'}$
 $D\epsilon \qquad \left(\nabla_{\mu} - \frac{1}{d}\gamma_{\mu}D\right)\epsilon$

• The same equation can be obtained from holography.

[Klare, AT, Zaffaroni, '12; Balasubramanian, Gimon, Minic, Rahmfeld '00, Cheng, Skenderis '05] The same equation can be obtained from holography.

[Klare, AT, Zaffaroni, '12; Balasubramanian, Gimon, Minic, Rahmfeld '00, Cheng, Skenderis '05]

• What about non-conformal theories?

Our results will apply almost verbatim to any susy theory with R-symmetry

The reason is basically that ordinary supergravity can be obtained by gauge-fixing conformal supergravity.

The same equation can be obtained from holography.

[Klare, AT, Zaffaroni, '12; Balasubramanian, Gimon, Minic, Rahmfeld '00, Cheng, Skenderis '05]

• What about non-conformal theories?

Our results will apply almost verbatim to any susy theory with R-symmetry

The reason is basically that ordinary supergravity can be obtained by gauge-fixing conformal supergravity.

We will now classify conformal Killing spinors.

$$\left(\nabla_{\mu}^{A} - \frac{1}{d}\gamma_{\mu}D^{A}\right)\epsilon = 0$$

II. Classification

Still 4d Euclidean $\mathcal{N}=1$

II. Classification

Still 4d Euclidean $\mathcal{N}=1$

• For A = 0, classification exists:

[Lichnerowicz '88]

$$\left(\nabla_{\mu} - \frac{1}{4}\gamma_{\mu}D\right)\epsilon = 0 \Rightarrow \epsilon' \sim \epsilon + D\epsilon$$
 is 'Killing spinor':
$$M_4 = S^4 \iff \nabla_{\mu}\epsilon' = \gamma_{\mu}\epsilon'$$

II. Classification

Still 4d Euclidean $\mathcal{N}=1$

• For A = 0, classification exists:

[Lichnerowicz '88]

$$\left(\nabla_{\mu} - \frac{1}{4}\gamma_{\mu}D\right)\epsilon = 0 \Rightarrow \epsilon' \sim \epsilon + D\epsilon$$
 is 'Killing spinor':
$$M_4 = S^4 \iff \nabla_{\mu}\epsilon' = \gamma_{\mu}\epsilon'$$

• For $A \neq 0$, we are on our own.

Let's assume ϵ is chiral (no loss of generality) and that it has no zeros (unlike for S^4).

$$\epsilon_+^{\dagger} \gamma_{\mu\nu} \epsilon_+ = j_{\mu\nu}$$

$$\overline{\epsilon_+}\gamma_{\mu\nu}\epsilon_+ = \omega_{\mu\nu}$$

 $j \wedge \omega = 0$ $\omega \wedge \bar{\omega} = 2j^2$

$$\omega \wedge \omega = 2$$

symplectic form
[Kähler if closed]

'holomorphic volume form'

$$\epsilon_{+}^{\dagger}\gamma_{\mu\nu}\epsilon_{+}=j_{\mu\nu} \qquad \qquad \overline{\epsilon_{+}}\gamma_{\mu\nu}\epsilon_{+}=\omega_{\mu\nu} \qquad \qquad j\wedge\omega=0 \\ \qquad \qquad \qquad \omega\wedge\bar{\omega}=2j^{2} \\ \qquad \qquad \qquad \qquad \text{ `holomorphic volume form'}$$

 ω determines an almost complex structure

[morally:
$$\omega = E^1 \wedge E^2$$
]
$$(1,0)\text{-forms}$$

$$\epsilon_{+}^{\dagger}\gamma_{\mu\nu}\epsilon_{+}=j_{\mu\nu} \qquad \overline{\epsilon_{+}}\gamma_{\mu\nu}\epsilon_{+}=\omega_{\mu\nu} \qquad \qquad \omega\wedge\bar{\omega}=0 \qquad \qquad \omega\wedge\bar{\omega}=$$

 ω determines an almost complex structure

[morally:
$$\omega = E^1 \wedge E^2$$
]
$$(1,0)\text{-forms}$$

$$\left(\nabla_{\mu}^{A} - \frac{1}{4}\gamma_{\mu}D^{A}\right)\epsilon_{+} = 0 \iff \begin{cases} A = \dots \\ d\omega = w \wedge \omega \end{cases}$$
 for some w

$$\epsilon_{+}^{\dagger}\gamma_{\mu\nu}\epsilon_{+}=j_{\mu\nu} \qquad \qquad \overline{\epsilon_{+}}\gamma_{\mu\nu}\epsilon_{+}=\omega_{\mu\nu} \qquad \qquad j\wedge\omega=0 \\ \qquad \qquad \omega\wedge\bar{\omega}=2j^{2}$$
 'holomorphic volume form'

 ω determines an almost complex structure

[morally:
$$\omega = E^1 \wedge E^2$$
]
$$(1,0)\text{-forms}$$

$$\left(\nabla_{\mu}^{A} - \frac{1}{4} \gamma_{\mu} D^{A} \right) \epsilon_{+} = 0 \iff \begin{cases} A = \dots \\ d\omega = w \wedge \omega \iff \text{a.c.s. is integrable} \\ \text{for some } w \end{cases}$$

Examples

Examples $\bullet S^3 \times S^1$

Examples

 \bullet $S^3 \times S^1$

It is a complex manifold: for example think

Examples

 \bullet $S^3 \times S^1$

It is a complex manifold: for example think

related by reduction to $\mathcal{N}=2$ SCFTs on S^3

Kähler manifolds

In this case holonomy is reduced to $U(2) = U(1) \times SU(2)$

So $\exists A$ such that

$$\nabla^{\mathbf{A}}_{\mu} \epsilon_{+} = 0$$

which of course is also a CKS
$$\nabla_{\mu}^{A} \epsilon_{+} = 0 \qquad (\nabla_{\mu}^{A} - \frac{1}{4} \gamma_{\mu} D^{A}) \epsilon_{+} = 0$$

This kind of 'trivial solution' to the CKS equation is what we usually call a twist.

• On the other hand:

 S^4 doesn't even admit an almost complex structure...

• On the other hand:

 S^4 doesn't even admit an almost complex structure...

But recall: ∃ CKS with zeros

 S^4 – {north pole} $\cong \mathbb{R}^2$ does have a complex structure.

Let's more quickly consider 4d Lorentzian $\mathcal{N}=1$.

Let's more quickly consider 4d Lorentzian $\mathcal{N}=1$.

 ϵ_+ now defines an ' \mathbb{R}^2 structure':

$$\begin{split} z_{\mu} &= \overline{\epsilon_{+}} \gamma_{\mu} \epsilon_{+} & \overline{\epsilon_{+}^{c}} \gamma_{\mu\nu} \epsilon_{+} = z_{[\mu} w_{\nu]}^{\text{complex vector}} \\ & \frac{1}{|a_{\mu}|} z_{\mu} z_{\mu} = 0 & \text{little group of } z \text{: SO}(2) \times \mathbb{R}^{2} \end{split}$$

w breaks it to \mathbb{R}^2

Let's more quickly consider 4d Lorentzian $\mathcal{N}=1$.

 ϵ_+ now defines an ' \mathbb{R}^2 structure':

$$z_{\mu} = \overline{\epsilon_{+}} \gamma_{\mu} \epsilon_{+}$$
 $\overline{\epsilon_{+}^{c}} \gamma_{\mu\nu} \epsilon_{+} = z_{[\mu} w_{\nu]}^{c}$ vector

$$\frac{\text{lightlike}}{\text{vector}} \ z_{\mu} z^{\mu} = 0$$

little group of z: SO(2) $\ltimes \mathbb{R}^2$ w breaks it to \mathbb{R}^2

$$\left(\nabla_{\mu}^{A}-\tfrac{1}{4}\gamma_{\mu}D^{A}\right)\epsilon_{+}=0\iff \begin{cases} A=\dots \\ L_{z}g_{\mu\nu}=\alpha g_{\mu\nu} \end{cases} \text{ [Cassani, Klare, Martelli, AT, Zaffaroni '12]}$$

[for some α]

conformal Killing vector

Similar results hold in 3d $\mathcal{N}=2$

•	$4d\mathcal{N}=1$	$3d\mathcal{N}=2$
Euclidean*	complex	$o \text{ complex 1-form}$ s.t. $do = w \wedge o$
Lorentzian	null CKV	null or timelike CKV

[Klare, AT, Zaffaroni '12]
[Dumitrescu, Festuccia, Seiberg '12]

[Klare, AT, Zaffaroni '12]

[Cassani, Klare, Martelli, AT, Zaffaroni '12]

[Hristov, AT, Zaffaroni '13]

[* see also Komargodski's talk]

[Closset, Dumitrescu, Festuccia, Komargodski, '12] [Closset, Dumitrescu, Festuccia, Komargodski, Shamir, to appear]

III. Holographic application

Asymptotically AdS₄ black holes

$$ds_4^2 = \frac{dr^2}{r^2} + (r^2 ds_{\mathbb{R} \times S^2}^2 + O(r))$$

boundary: a conformal theory lives here

III. Holographic application

Asymptotically AdS₄ black holes

$$ds_4^2 = \frac{dr^2}{r^2} + (r^2 ds_{\mathbb{R} \times S^2}^2 + O(r))$$

boundary: a conformal theory lives here

here $\mathbb{R} \times S^2$ boundary black hole

We classified all null or timelike CKVs on $\mathbb{R} \times S^2$: [Hristov, AT, Zaffaroni '13]

 ${F = dA \text{ background field-strength}}$

$$F=0$$
 $\{z=\partial_t+\partial_\phi ext{, for ex.}\}$

$$F = -rac{1}{2} ext{vol}_{S^2}$$
 $z = \partial_t$ 'twist'

[interpolating family: $z = \partial_t + a\partial_\phi$]

[F = dA background field-strength]

$$F=0$$
 $\{z=\partial_t+\partial_\phi ext{, for ex.}\}$

$$F = -\frac{1}{2} \mathrm{vol}_{S^2}$$
 $z = \partial_t$ 'twist'

[interpolating family: $z = \partial_t + a\partial_\phi$]

These two cases reproduce the two empirically known asymptotic behaviors of AdS4 BPS black holes!

[F = graviphoton field-strength]

$$F = 0$$

1/2 BPS; naked sing.!

$$F = -rac{1}{2} ext{vol}_{S^2}$$

1/4 BPS, finite horizon

[interpolating family: rotating BHs]

[Cacciatori, Klemm '09]

In fact, the 1/4 BPS solutions look like

$$AdS_4$$
 AdS $_2 \times S^2$ [infinity] [near-horizon]

In fact, the 1/4 BPS solutions look like

AdS₄ AdS₂
$$\times$$
 S^2 [infinity] [near-horizon]

the field theory dual should be

In fact, the 1/4 BPS solutions look like

AdS₄ AdS₂
$$\times$$
 S^2 [infinity] [near-horizon]

the field theory dual should be

this would give a way to count the entropy using the AdS2/CFT1 correspondence.

[Hristov, AT, Zaffaroni '13] [Hristov, Rosa, AT, Zaffaroni, in progress!]

Conclusions

• A supersymmetric theory (with R-symmetry, low enough susy) is still supersymmetric on curved spaces if a CKS (or 'twistor') exists

• Existence of CKSs is equivalent to elegant geometrical properties

• These classification results restrict the possible asymptotic behaviors of AdS BPS black holes

Backup slides

Actually, for higher susy a second (tougher) equation appears.

eg. for
$$d=4, \mathcal{N}=2$$
 also a $\delta\lambda$ appears. $d=6, \mathcal{N}=1$

[Klare, Zaffaroni '13]

e.g. [Samtleben, Sezgin, Tsimpis'13]

In this talk, we will keep susy low enough so that this complication does not appear:

$$d = 4, \mathcal{N} = 1$$

 $d = 3, \mathcal{N} = 2$

$$d=3, \mathcal{N}=2$$

 ϵ_+ is twisted by $A\Rightarrow$ section of $\Sigma_+\otimes\mathcal{U}$ $\Rightarrow \omega \text{ section of } K\otimes\mathcal{U}^2 \Rightarrow \text{ it can exist globally}$