

Direct searches for Higgs-like particles at LHCb

- How can LHCb contribute to the direct search for New Physics ? -

Stephane Tourneur (EPFL) (for the LHCb Collaboration)

SUSY 2013

ICTP, Trieste 30-08-2013

- Introduction
- Direct searches with taus: $H \rightarrow \tau \tau$
- Direct searches with B jets: Towards $H \rightarrow b\bar{b}$ and $H_2 \rightarrow H_1 H_1 \rightarrow 4b$
- Direct searches of new Long-Lived Particles

Conclusion

2008 JINST 3 S08005

The LHCb detector

- Data collected:
 - 1 fb⁻¹ @ √s=7 TeV
 - 2 fb⁻¹ @ √s=8 TeV
- Luminosity leverage:
 - <Pile-up> ~ 2
 - Cleanest LHC events!

- Despite lower geom. acceptance and luminosity than ATLAS/CMS, LHCb offers a complementary strategy for <u>direct New Physics (NP) searches</u>:
 - Unique acceptance 2 <η< 5 : test central-forward asymmetries and models with enhanced forward production
 - Very large brandwith triggers for events with B jets or displaced vertices, and very efficient even at very low $\rm p_{\tau}$
 - a "nightmare" scenario: if NP produces no high p_{τ} lepton, no high missing energy, but only jets with p_{τ} below ATLAS/CMS trigger thresholds...
 - If with b's and/or long lived (1-100 ps) particles, LHCb could fill this gap!

• Introduction

• Direct searches with taus: $H \rightarrow \tau \tau$

- Direct searches with B jets: Towards $H \rightarrow b\bar{b}$ and $H_2 \rightarrow H_1 H_1 \rightarrow 4b$
- Direct searches of new Long-Lived Particles

Conclusion

Limits on Higgs $\rightarrow \tau \tau$

- Goal: set limits on Higgs production in the forward region
- Data sample used: 1 fb⁻¹ @ √s = 7 TeV
- Channels and selection:

 $H \rightarrow \tau_{\mu} \tau_{\mu}, \tau_{\mu} \tau_{e}, \tau_{e} \tau_{\mu}$ (2l) and $H \rightarrow \tau_{\mu} \tau_{h}, \tau_{e} \tau_{h}$ (l + 1-prong)

 $p_{T}(e/\mu) > 20 \text{ GeV/c}$ $p_{T}(e/\mu/h) > 5 \text{ GeV/c}$

- The signal yield is obtained from a fit of the tau pair mass distribution using template shapes for signal and backgrounds
 - Signal: Higgs $\rightarrow \tau \tau$
 - Main backgrounds: $Z \rightarrow \tau \tau$, QCD

JHEP05(2013)132

5/14

JHEP05(2013)132

Limits on Higgs $\rightarrow \tau\tau$

- Upper limits:
 - obtained from extended likelihood using mass shape and taking into account the systematics as nuisance parameters (method in arXiv: 1007.1727)

- Introduction
- Direct searches with taus: $H \rightarrow \tau \tau$
- Direct searches with B jets: Towards $H \rightarrow b\bar{b}$ and $H_2 \rightarrow H_1 H_1 \rightarrow 4b$
- Direct searches of new Long-Lived Particles

Conclusion

Towards W/Z+H \rightarrow bb and H₂ \rightarrow H₁H₁ \rightarrow 4b at LHCb

- In WH and ZH the fraction of Higgs decaying into 2 b's in LHCb acceptance is:
 - 5% at √s = 7 TeV
 - 11% at √s = 14 TeV
- W/ZH and 4b analyses ongoing on the 2011/12 LHCb dataset

On this path:

- New tools developped: jets at LHCb and B-jet tagging
- Benchmark analyses already done:
 - Measurement of the central forward bb asymmetry (LHCb-CONF-2013-001)
 - Measurement of $\sigma(b\overline{b})$ with inclusive final states (LHCb-CONF-2013-002)

Inclusive bb cross section measurement

Fit of the shape of a multivariate discriminant built to isolate bb events

- bb and cc template shapes obtained from simulation checked with data
- Result for 2.5< η <4 and p_T >5 GeV: $\sigma(b\overline{b}) = 7.7 \pm 0.12$ (stat) ± 0.84 (sys) μb (PowHeg-extrapolated to full space: 364 μb)

LHCb-CONF-2013-002

BDTG response

- Introduction
- Direct searches with taus: $H \rightarrow \tau \tau$
- Direct searches with B jets: Towards $H \rightarrow b\bar{b}$ and $H_2 \rightarrow H_1 H_1 \rightarrow 4b$
- Direct searches of new Long-Lived Particles

Conclusion

1/14

h^o decaying to Long-Lived Particles

Many BSM theories predict Long Lived massive Particles (LLP) :

- SUSY with RPV through Baryon number Violation:
 - Carpenter, Kaplan and Rhee, Phys. Rev. Lett. 99 (2007) 211801
 - $h^0 \rightarrow X^0 X^0$, with X^0 neutralino long-lived, $X^0 \rightarrow 3$ quarks
 - For $m(h^0) = 114 \text{ GeV}$, $m(X^0) = 48 \text{ GeV}$ and $\tau(X^0) = 10 \text{ ps} (BV48)$:
 - 25% of the events have a X^o decay vertex inside LHCb.
 - X^o mass and lifetime range tested at LHCb:

20 < m(X⁰) < 60 GeV and 1 < τ(X⁰) < 25 ps

• Some Hidden Valley (HV) models:

S. Tourneur

- Strassler, Zurek, Phys. Lett. B651 (2007) 374

- $h^0 \rightarrow \pi^0_{v} \pi^0_{v} \rightarrow 4$ displaced b quarks (π^0_{v} is the LLP (HV10))

Direct searches for Higgs-like particles at LHCb

h^o decaying to Long-Lived Particles

- Strategy: Reconstruct the two X⁰ decay vertices inside LHCb and combine to form the h⁰ mother
- Dataset used: 36 pb^{-1} at $\sqrt{s} = 7 \text{ TeV}$
- Event selection:
 - X⁰ reconstruction :
 - Matter veto
 - R > 0.4 mm, N(tracks) > 5
 - Mass (trks only) > 6 GeV
 - 2 X^0 reconstructed, back-to-back in ϕ
 - Efficiency obtained from simulation
 - Overall efficiency: 0.384 ± 0.017(stat) ± 0.085(sys)%

LHCb Trigger:

- 2 displaced vertices (R > 0.4 mm) with > 3 trks and mass (trks only) > 1.5 GeV
- Efficiency on selected "BV48" signal events: 65%
- LHCb is only LHC experiment testing $h^0 \rightarrow X^0 X^0 \rightarrow 6q$ with vertex at very small distance from beam axis and low mass

S. Tourneur

Direct searches for Higgs-like particles at LHCb

h^o decaying to Long-Lived Particles

	Results:	L	LLP lifetime $= 10 \text{ ps}$				
	 No candidate found in 36 nb⁻¹ 	m _{LLI}	- 30) 3!	5 40	48	
	No candidate found in 50 pb	m_{h^0}	(p	o)			
	• Upper limits on $\sigma(h^0) \times BR(h^0 \rightarrow X^0X^0)$	100	10	1 58	3 44	58	
	in these 2 tables (in pb)	105	10	0 75	5 44	39	
	- For the BV48 point: $\sigma(h^{\circ}) \times BR(h^{\circ} \rightarrow X^{\circ}X^{\circ}) < 32 \text{ pb}$	110	13	2 75	5 56	34	
		114	12	8 91	1 47	32	
		120	14	8 93	3 58	34	
		125	17	9 90) 61	41	
	 Results presently driven by the low statistics, will improve with more data 	Higgs mass = 114 GeV/c^2					
		m_{LLP}	30	35	40	48	
	 In progress: 	$ au_{LLP}$	(pb)				
	- 80 times more data on nine	3	210	156	136	168	
	ou times more data on pipe	5	145	101	68	58	
	 include jet reconstruction 	10	129	91	47	32	
	 Extension to single LLP search. 	15	155	90	49	31	
		20 21	131	93	63 C1	32	
		$Z\mathfrak{I}$	14Z	100	01	-34	

S. Tourneur

Outlook

- Due to its unique forward acceptance and trigger system, LHCb complements the LHC program on direct searches for NP
 - LHCb is only place to search for softer new physics signatures which don't pass ATLAS/CMS high p₁ trigger cuts
 - Direct searches relevant at LHCb are "off the beaten track" and therefore often have *lower experimental constraints*
- LHCb direct searches have not yet pointed to new physics but ...
- ... direct Higgs-like and NP searches at LHCb will greatly benefit from:
 - Update with full 1 and 3 fb⁻¹ datasets taken at 7 and 8 TeV resp. since present uncertainties are generally of statistical nature
 - 13 TeV collisions in 2015 (events more boosted forward + higher XS)
 - LHCb detector upgrade in 2019 that should enable to run with 5 times more instantaneous luminosity and an improved detector
- Common LHCb-theorists workshop 14-16 october:
 - Join the exotica session and help us extend the LHCb program on direct NP searches (http://indico.cern.ch/conferenceDisplay.py?confld=255380)

Backup

Direct searches for Higgs-like particles at LHCb

Theoretical references

- "Asymptotic formulae for likelihood-based tests of new physics", Glen Cowan, Kyle Cranmer, Eilam Gross, Ofer Vitells, Eur.Phys.J.C71:1554,2011
- "Proposal for Higgs and Superpartner Searches at the LHCb Experiment", David E. Kaplan, Keith Rehermann, JHEP 0710:056,2007
- "Reduced Fine-Tuning in Supersymmetry with R-parity violation", Linda M. Carpenter, David E. Kaplan, Eun-Jung Rhee, Phys. Rev. Lett. 99 (2007) 211801
- "Echoes of a Hidden Valley at Hadron Colliders", Matthew J. Strassler, Kathryn M. Zurek, JHEP 0710:056,2007

2008 JINST 3 S08005

Typical resolutions at LHCb

• Detector resolution:

- Tracking: $\sigma p/p = 0.4\%$ at 5 GeV/c and 0.6% at 100 GeV/c
- ECAL: $\sigma E/E = 10\%/\sqrt{E+1\%}$, HCAL: $\sigma E/E = 70\%/\sqrt{E+10\%}$
- Vertex detector: 20 µm IP resolution at p₁=2 GeV/c

JHEP01 (2013), 111

$Z\to\tau\tau$

- Main backgrounds:
 - QCD and W+jet: from same sign ττ data
 - $Z/\gamma^* \rightarrow \mu\mu$: from $Z \rightarrow \mu\mu$ resonance and low impact parameter sidebands
- Purity: 65-70% in all channels
- Analysis extended to $H \rightarrow \tau \tau$ search

Selection of Higgs $\rightarrow \tau\tau$ events

• Channels considered:

 $H \rightarrow \tau_{\mu} \tau_{\mu}, \tau_{\mu} \tau_{e}, \tau_{e} \tau_{\mu}$ (2l) and $H \rightarrow \tau_{\mu} \tau_{h}, \tau_{e} \tau_{h}$ (l + 1-prong)

Selections applied to τ pairs:

h^o decaying to Long-Lived Particles

- Loosen selection for control region:
 - LLP vertex outside matter. m(trks) > 4 GeV, R > 0.4 mm, N(tracks) > 3
 - Shapes well compatible with pure bbbar (see 3 figs)
 - Yields also compatible with pure bbbar events

LHCb Preliminary

Data

MC: bb

10⁻¹

120

Jet energy resolution at LHCb

- Using jets back to back with Z bosons reconstructed in their dimuon decay, simulation of jet energy scale is found to represent data with a precision of 3%
- From simulation, jet energy resolution at LHCb is then found to be 17% at pT = 30 GeV

"LHCb implications" workshop 14-16 October 2013

- Mixed Theorists/LHCb workshop
- A "Forward exotica" session:
 - An occasion for theorists to propose new ideas to complement LHC direct searches using LHCb detector's unique viewpoint :
 - Test softer new physics signals (below ATLAS/CMS trigger $\mathbf{p}_{_{\mathrm{T}}}$ thresholds)
 - Detector optimized to see displaced vertices
 - High brandwith trigger
 - Low pile-up
 - Superior particle identification (eg. Pi⁺/K⁺ with Cherenkov)
 - Looking forward

Contact us: http://indico.cern.ch/conferenceDisplay.py?confld=255380