

SUSY 2013 ICTP Trieste, Italy 26.08-31.08.2013

What Characterizes Exotics Searches?

No precise model to guide us. No unified parameter phase space to map results

The Role of Models in "most" Exotics Searches

Exotics Search Strategy

- Cover wide range of final states
- Largely model independent
 - Look for resonances
 - Look for any disagreement from expectations
- Cover interesting new BSM models

Comment to Result Selection in this Talk

Show some typical Exotics search examples

"What is the impact of the newly discovered boson on Exotics searches at the LHC?"

8 TeV Results

All ATLAS Public Exotics Results are <u>HERE</u>

Overview of Results

Same-sign dilepton 1210.4538 Tri-leptons ATLAS-CONF-2013-070

Dark Matter Searches at ATLAS

Dark Matter (DM) Production at LHC $pp \rightarrow \chi \chi + X$

- Effective theory with only 2 parameters (arXiv:1008.1783)
 - M*: characterize interaction strength of the interactions with SM particles
 - m_x: mass of dark matter candidate

EFT valid for $Q_{TR} < 4\pi M_*$

Effective interactions coupling DM to SM quarks or gluons

	Name	Initial state	Type	Operator	ā
/2	D1	qq	scalar	$rac{m_q}{M_\star^3} ar\chi \chi ar q q$	200202
491	D5	qq	vector	$\frac{1}{M_\star^2} \bar{\chi} \gamma^\mu \chi \bar{q} \gamma_\mu q$	2000002
1210.4	D8	qq	axial-vector	$\frac{1}{M_{\star}^2}\bar{\chi}\gamma^{\mu}\gamma^5\chi\bar{q}\gamma_{\mu}\gamma^5q$	<u> </u>
	D9	qq	tensor	$\frac{1}{M_{\star}^2} \bar{\chi} \sigma^{\mu\nu} \chi \bar{q} \sigma_{\mu\nu} q$	
	D11	gg	scalar	$\frac{1}{4M_\star^3}\bar{\chi}\chi\alpha_s(G^a_{\mu\nu})^2$	q x

Pair production of DM:

Events with ME_T, recoiling against additional hadronic radiation

Mono Jet and Mono Photon Searches

ATLAS-CONF-2013-073

- Hadronically decaying W/Z's
- Jet Substructure techniques
 - Cambridge-Aachen 1.2 jets
 - Probe momentum balance
 - $\sqrt{y} = \min(p_{T1}, p_{T2}) \Delta R/m_{jet}$

Backgrounds

- Z \rightarrow vv + jet and W/Z \rightarrow lv/ll + jet
 - Use data control regions
- Diboson, ttbar, single top
 - Use simulation
- Multijet negligible

Signal Samples

Name	Operator	Coefficient
D9	$\overline{\chi}\sigma^{\mu u}\chi\overline{q}\sigma_{\mu u}q$	$1/{M_{*}}^{2}$
D5	$\overline{\chi}\gamma^{\mu}\chi\overline{q}\gamma_{\mu}q$	$1/{M_{*}}^{2}$
D1	<u></u>	m_q/M_*^3
C1	$\chi^{\dagger}\chi\overline{q}q$	$m_q/{M_*}^2$

Interference btw diagrams

- C(ux)=C(dx), C=coupling
 - destructive
 - W's p_T low
- C(ux) = -C(dx)
 - Constructive
 - W's p_T high
- D5 signal generated
 - C(uχ)=C(dχ)
 - C(ux)=-C(dx)

Boosted Mono W/Z Production

- Good agreement
- Exclusion limits at 90% CL using shape of m_{jet}

Process	$E_{\rm T}^{\rm miss} > 350 {\rm GeV}$	$E_{\rm T}^{\rm miss} > 500 { m GeV}$
$Z \to \nu \bar{\nu}$	400^{+39}_{-34}	54^{+8}_{-10}
$W \to \ell^{\pm} \nu, Z \to \ell^{\pm} \ell^{\mp}$	210^{+20}_{-18}	22_{-5}^{+4}
WW, WZ, ZZ	57^{+11}_{-8}	$9.1^{+1.3}_{-1.1}$
$t\bar{t}$, single t	39_{-4}^{+10}	$3.7^{+1.7}_{-1.3}$
Total	710_{-38}^{+48}	89^{+9}_{-12}
Data	705	89

C. Issever, University of Oxford

new

Limits on Parameters of effective DM Model

Limits on Nucleon-x Cross Section

Limits on Nucleon-x Cross Section

Intensive Discussion about how to interpret Mono-X analyses

G. Busonia, A. De Simonea, E. Morgantec, A. Riotto

- "On the Validity of the Effective Field Theory for Dark Matter Searches at the LHC", arXiv:1307.2253v1
- Derive stronger bounds than currently used by LHC experiments

New models:

- A. DiFranzo, K. I. Nagao, A. Rajaraman, T.M.P. Tait,
 - "Simplified Models for Dark Matter Interacting with Quarks", arXiv:1308.2679v1
- S. Chang, R. Edezhath, J. Hutchinson, and M. Luty,
 - "Effective WIMPs", arXiv:1307.8120v1
- Yang Bai and Joshua Berger,

For more details refer to Marie-Helene Genest's talk yesterday

Dielectron Event Display

20 fb⁻¹ Dilepton Searches: invariant mass

Experimental Challenge:

Iepton pT resolution and efficiency up to 1 TeV!

Good agreement btw data and prediction

ATLAS-CONF-2013-017

Dilepton Searches: Systematic Uncertainties

Source	Dielectrons		Dimuons	
	Signal	Background	Signal	Background
Normalization	5%	NA	5%	NA
PDF variation	NA	15%	NA	15%
PDF choice	NA	17%	NA	17%
Scale	NA	-	NA	-
α_s	NA	4%	NA	4%
Electroweak corrections	NA	3%	NA	3%
Photon-induced corrections	NA	4%	NA	4%
Efficiency	-	-	6%	6%
Resolution	-	-	-	3% (7%)
W + jet and multi-jet background	NA	9%	NA	-
Diboson and ttbar extrapolation	NA	5%	NA	4%
Total	5%	26%	8%	25% (26%)

Dilepton Credibility Limits

More interpretations with 7 TeV: Z*, LSTC ρ_T , MWT M_A, Z_{KK} / γ_{KK} , TS http://dx.doi.org/10.1007/JHEP11(2012)138

Ditaus (fully hadronic)

■ Lepton universality not necessary for these new gauge bosons → Essential to search in ALL decay modes 19.5 fb^{-1}

Dijet Event Display with m_{inv} = 4.69 TeV

ATLAS-CONF-2012-148

Heavy Resonance Search: 8 TeV Dijets

- Strong gravity, excited quarks
- Selections
 - Two anti-kt 0.6 jets
 - p^j_T>150 GeV && m_{ij}>1 TeV
 - |y|<2.8 && dijet CM rapidity |y*| < 0.6, y*=±0.5*(y₁-y₂)
- Look for resonance above phenomenological fit of data

$$f(x) = p_1 (1-x)^{p_2} x^{p_3 + p_4 \ln x}$$
$$x \equiv m_{jj} / \sqrt{s}$$

ATLAS-CONF-2012-148

Heavy Resonance Search: 8 TeV Dijets

20.3 fb⁻¹

Dijet resonance + W/Z→Iv/II

new

ATLAS-CONF-2013-074

- Very interesting final state
 - Sensitive to VH
 - Extradimension
 - Technicolor, little Higgs

Selections

 $p_T^{IV/II} > 50 \text{ GeV}$

 \geq 2 jets with p_T> 30 GeV

|∆η_{ii}| < 1.75, |∆φ_{ii}|>1.6

Backgrounds

- Estimated with MC
 - W/Z+jets dominant
 - ttbar
 - single-top
 - Diboson
- Multijet estimate w data

Source	$\Delta\sigma/\sigma\%$ for Wjj	$\Delta\sigma/\sigma\%$ for Zjj			
W/Z+jets normalization	±5	±16			
W/Z jets shape variation	± 2	± 4			
Multijet shape and normalization	± 5	N/A			
Top normalization	± 4	± 7			
Top Modeling	± 3	± 4			
Jet energy scale (all samples)	±10	±11			
Jet energy resolution (all samples)	± 2	±3			
Lepton reconstruction (all samples)	± 1	±3			
PDF (signal)	± 5	± 6			
$\frac{PDF(top)}{T}$ m(π) = 190 C	$\frac{\pm 6}{2}$	±3			
= III(II _T) – 100 GeV $=$					

Systematic Uncertainties

95% CL upper σXBR on LSTC Technipion + Z/W production

LSTC = Low Scale TechniColor

New Physics Searches with high-pt top quarks

- Highly coupled to EWK symmetry breaking
- LHC is a top factory
- Huge mass of top
 - Bizarre
 - New physics
- Heavy new particles
 - Couple strongly to top
 - Produce boosted tops
- New techniques for top ID

Boosted Regime

Rule of thumb:

top with p_⊤ > 350 GeV decay products within R~1

Jet Substructure: Splitting Scales

e.g k_T-splitting scales

 $d_{ij} = \min(p_{Ti}^2, p_{Tj}^2) \times \Delta R_{ij}^2/R^2$

- i, j constituents of current jet clustering step
- re-cluster constituents using kt → highest p_T constituents clustered last

E. Thompson, Jet Substructure and Boosted top-tagging at ATLAS C. Issever, University of Oxford

CERN-PH-EP-2013-069, arXiv:1306.4945

31

Variable Isolation Cone

C. Issever, University of Oxford

Boosted Top Event Candidate with m_{ttbar}=2.6 TeV

Heavy Resonances Search: ttbar

ATLAS-CONF-2013-052

- Lepton+jets channel
- Models: e.g. bulk-RS (esp. KK gluons) and Leptophobic Z'
 - Large Branching Ratio to top-antitop
- Combining resolved and boosted reconstructions
- Taking full advantage of boosted techniques

Discriminant distribution m_{ttbar}

m_{tt} resolved + boosted in e+jets and μ +jets

Heavy Resonances Search: ttbar

More details by Oana E.Vickey Boeriu this afternoon
Searches for Vector-like Quarks (T, B)

- Composite Higgs
- Little Higgs models
- Warped extra dimension
- 2HDM models
- Not excluded by Higgs mass constraints/branching ratios
- Very rich phenomenology
 - Final states with multiple
 - W/Z/H's, b and top quarks
 - T: Decays to Wb, Zt, Ht
 - B: Decays to Wt, Zb, Hb
- Loose constraints on CKM4 → decays to light quarks possible! C. Issever, University of Oxford

$T \longrightarrow H t$

ATLAS-CONF-2013-018

Complex-conjugate decay modes are implicit

Complex-conjugate decay modes are implicit

Complex-conjugate decay modes are implicit

Discriminant Variable H_T

$$H_{T} = \sum_{Scalar Sum} P_{T,lepton} + E_{T,miss} + P_{T,jets}$$

Discriminant Variable H_T

Discriminant Variable H_T

44

Exlusion Limits for Vector Like T Quark

Exlusion Limits for Vector-Like T Quark

Exlusion Limits for Vector Like B Quark

Inclusive Same-Sign Dilepton Search

Model independent approach

Limit presented in terms of fiducial cross-section limit

 $\sigma_{95}^{\text{fid}} = \frac{N_{95}}{\varepsilon_{\text{fid}} \times \int \mathcal{L}dt} = \frac{N_{95}}{\varepsilon_{\text{fid}} \times \int \mathcal{L}dt}$

Within acceptance

- σ^{fid} is (almost) model-independent
- Can turn σ^{fid} into σ^{total} with generator-level information only
- Caveat: not exactly model-independent → must be conservative

		Electron requirement	Muon requirement	
	Leading lepton $p_{\rm T}$	$p_{\rm T} > 25 {\rm ~GeV}$	$p_{\rm T} > 20 {\rm ~GeV}$	
Particle-level definition of acceptance	Sub-leading lepton $p_{\rm T}$	$p_{\rm T} > 20 {\rm ~GeV}$	$p_{\rm T} > 20 {\rm ~GeV}$	
	Lepton η	$ \eta < 1.37$ or $1.52 < \eta < 2.47$	$ \eta < 2.5$	
	Isolation	$n^{\text{cone0.3}}/m_{\pi} < 0.1$	$p_{\rm T}^{\rm cone0.4}/p_{\rm T} < 0.06$ and	
		$P_{\rm T}$ / $P_{\rm T}$ < 0.1	$p_{\mathrm{T}}^{\mathrm{cone0.4}} < 4 \ \mathrm{GeV} + 0.02 \times p_{\mathrm{T}}$	

1210.4538

1210.400

Inclusive Same-Sign Dilepton Search

1210.4538

Inclusive Same-Sign Dilepton Search

<u>1210.4538</u>

95% upper limits			Mass	ee		eµ		μμ		
1 7 fb and 64 fb				exp	obs	exp	obs	exp	obs	
						9	5% C.L. up	per limit [fl	b]	
				Mass range	expected e^{\pm}	e^{\pm}	expected e^{\pm}	observed μ^{\pm}	expected μ^{\pm}	observed μ^{\pm}
_				$m>15~{\rm GeV}$	46^{+15}_{-12}	42	56^{+23}_{-15}	64	$24.0^{+8.9}_{-6.0}$	29.8
Fiducial cross section upper limits			$m>100~{\rm GeV}$	$24.1^{+8.9}_{-6.2}$	23.4	$23.0^{+9.1}_{-6.7}$	31.2	$12.2^{+4.5}_{-3.0}$	15.0	
			$m>200~{ m GeV}$	$8.8^{+3.4}_{-2.1}$	7.5	$8.4^{+3.4}_{-1.7}$	9.8	$4.3^{+1.8}_{-1.1}$	6.7	
			$m>300~{\rm GeV}$	$4.5^{+1.8}_{-1.3}$	3.9	$4.1^{+1.8}_{-0.9}$	4.6	$2.4^{+0.9}_{-0.7}$	2.6	
				$m>400~{\rm GeV}$	$2.9^{+1.1}_{-0.8}$	2.4	$3.0^{+1.0}_{-0.8}$	3.1	$1.7^{+0.6}_{-0.5}$	1.7
					e^+	e^+	e^+	μ^+	μ^+	μ^+
	e^-e^-			$m > 15 { m ~GeV}$	$29.1^{+10.2}_{-8.6}$	22.8	$34.9^{+12.2}_{-8.6}$	34.1	$15.0^{+6.1}_{-3.3}$	15.2
			4	$m > 100 { m ~GeV}$	$16.1^{+5.9}_{-4.3}$	12.0	$15.4^{+5.9}_{-4.1}$	18.0	$8.4^{+3.2}_{-2.4}$	7.9
Γ	$23.2^{+8.6}$	25.7		m > 200 GeV	$7.0^{+2.9}_{-2.2}$	6.1	$6.6^{+3.5}_{-1.8}$	8.8	$3.5^{+1.6}_{-0.7}$	4.3
	-5.8			$m>300~{\rm GeV}$	$3.7^{+1.4}_{-1.0}$	2.9	$3.2^{+1.2}_{-0.9}$	3.2	$2.0^{+0.8}_{-0.5}$	2.1
V	$12.0^{+5.3}_{-2.8}$	18.7		$m>400~{\rm GeV}$	$2.3^{+1.1}_{-0.6}$	1.7	$2.4^{+0.9}_{-0.6}$	2.5	$1.5^{+0.6}_{-0.3}$	1.8
	-2.6				e ⁻	e^-	e ⁻	μ^{-}	μ^{-}	μ^{-}
V	$4.9^{+1.9}_{-1.2}$	4.0		$m > 15 { m ~GeV}$	$23.2^{+8.6}_{-5.8}$	25.7	$26.2^{+10.6}_{-7.6}$	34.4	$12.1^{+4.5}_{-3.5}$	18.5
-+	1.2			$m>100~{\rm GeV}$	$12.0^{+5.3}_{-2.8}$	18.7	$11.5^{+4.2}_{-3.5}$	16.9	$6.0^{+2.3}_{-1.9}$	10.1
300 GeV $2.9^{+1.0}_{-0.6}$ 2.7			$m>200~{\rm GeV}$	$4.9^{+1.9}_{-1.2}$	4.0	$4.6^{+2.1}_{-1.2}$	4.5	$2.7^{+1.1}_{-0.7}$	4.4	
	10.0			$m > 300 { m ~GeV}$	$2.9^{+1.0}_{-0.6}$	2.7	$2.7^{+1.1}_{-0.6}$	3.5	$1.5^{+0.8}_{-0.3}$	1.7
V	$1.8^{+0.8}_{-0.4}$	2.3		$m > 400 { m ~GeV}$	$1.8^{+0.8}_{-0.4}$	2.3	$2.3^{+0.8}_{-0.5}$	2.5	$1.2^{+0.4}_{-0.0}$	1.2
	p a F V V V	oper limits and 64 fb Fiducial cross upper lin $e^ 23.2^{+8.6}_{-5.8}$ $12.0^{+5.3}_{-2.8}$ $4.9^{+1.9}_{-1.2}$ $4.9^{+1.9}_{-1.2}$ $2.9^{+1.0}_{-0.6}$ V $1.8^{+0.8}_{-0.6}$	epser limits and 64 fb Fiducial cross section upper limits $e^-e^ 23.2^{+8.6}_{-5.8}$ 25.7 $12.0^{+5.3}_{-2.8}$ 18.7 $4.9^{+1.9}_{-1.2}$ 4.0 $2.9^{+0.6}_{-0.6}$ 2.7 $1.8^{+0.8}_{-0.4}$	e limits and 64 fb Fiducial cross section upper limits $e^-e^ 23.2^{+8.6}_{-5.8}$ 25.7 $12.0^{+5.3}_{-2.8}$ 18.7 $4.9^{+1.9}_{-1.2}$ 4.0 $2.9^{+1.0}_{-0.6}$ 2.7 $1.8^{+0.8}_{-0.4}$	oper limits Mass and 64 fb Mass range Fiducial cross section upper limits $m > 15 \text{ GeV}$ $m > 100 \text{ GeV}$ $m > 100 \text{ GeV}$ $m > 200 \text{ GeV}$ $m > 300 \text{ GeV}$ $m > 400 \text{ GeV}$ $m > 100 \text{ GeV}$ $m > 100 \text{ GeV}$ $m > 200 \text{ GeV}$ $m > 100 \text{ GeV}$ $m > 300 \text{ GeV}$ $m > 100 \text{ GeV}$ $m > 300 \text{ GeV}$ $m > 100 \text{ GeV}$ $m > 300 \text{ GeV}$ $m > 100 \text{ GeV}$ $m > 300 \text{ GeV}$	Oper limits Mass e $and 64 fb$ exp Fiducial cross section upper limits $Mass range expected e^{\pm i 25}$ $m > 15 \text{ GeV} = 46^{\pm 15}$ $m > 100 \text{ GeV} = 24.1^{\pm 8.9}$ $m > 200 \text{ GeV} = 8^{\pm 2.1}$ $m > 200 \text{ GeV} = 29^{\pm 1.16}$ $m > 100 \text{ GeV} = 2.9^{\pm 1.8}$ $m > 200 \text{ GeV} = 7.0^{\pm 2.2}$ $m > 200 \text{ GeV} = 7.0^{\pm 2.2}$ $m > 300 \text{ GeV} = 7.0^{\pm 2.2}$ $m > 200 \text{ GeV} = 7.0^{\pm 2.2}$ $m > 300 \text{ GeV} = 7.0^{\pm 2.2}$ $m > 200 \text{ GeV} = 7.0^{\pm 2.2}$ $m > 300 \text{ GeV} = 2.3^{\pm 1.6}$ $M = 4.9^{\pm 1.12}$ 4.0 $m > 100 \text{ GeV} = 12.0^{\pm 5.3}$ $M = 1.5 \text{ GeV} = 2.2^{\pm 2.8}$ $m > 100 \text{ GeV} = 12.0^{\pm 5.3}$ $M = 1.8^{\pm 0.8}$ 2.3 $m > 200 \text{ GeV} = 4.9^{\pm 1.2}$ $m > 200 \text{ GeV} = 12.0^{\pm 5.3}$ $m > 200 \text{ GeV} = 12.0^{\pm 5.3}$ $M = 1.8^{\pm 0.8}$ 2.3 $m > 400 \text{ GeV} = 18^{\pm 0.6}$	Oper limitsMasseeand 64 fb exp obsFiducial cross section upper limits $Mass range$ $expected$ $w > 15$ GeV 46^{-112}_{-12} 42 $w > 100$ GeV $24.1^{+8.9}_{-1.2}$ 23.4 $w > 200$ GeV $8.8^{+3.1}_{-1.3}$ 7.5 $w > 300$ GeV $4.5^{+1.3}_{-1.3}$ 3.9 $w > 400$ GeV $2.9^{+1.8}_{-1.2}$ 24.4 $w > 12.0^{+5.3}_{-5.8}$ 25.7 $w > 300$ GeV v $12.0^{+5.3}_{-2.8}$ 18.7 v $4.9^{+1.9}_{-1.2}$ 4.0 v $2.9^{+1.0}_{-1.2}$ 2.7 $w > 200$ GeV $23^{+1.6}_{-1.3}$ v $2.9^{+1.0}_{-1.2}$ v $2.9^{-0.6}_{-1.2}$ v $1.8^{+0.8}_{-0.6}$ v $2.9^{-0.6}_{-1.2}$ v $0.9^{-0.6}_{-1.2}$ $w > 400$ GeV $23^{+1.3}_{-1.3}$ $w > 400$ GeV $23^{+1.3}_{-1.4}$ $w > 200$ GeV $4.9^{+1.2}_{-1.2}$ $w > 400$ GeV $2.3^{+1.3}_{-1.4}$ $w > 400$ GeV $2.3^{+1.6}_{-1.4}$ $w > 200$ GeV $4.9^{+1.2}_{-1.2}$ $w > 4.9^{-1.2}_{-1.2}$ 4.0 $w > 4.9^{-1.2}_{-1.2}$ 4.0 $w > 4.9^{-1.0}_{-1.2}$ 2.7 $w > 200$ GeV $4.9^{+1.2}_{-1.3}$ $w > 200$ GeV $4.9^{+1.2}_{-1.3}$ $w > 4.9^{-1.6}_{-1.2}$ 2.7 $w > 4.9^{-1.6}_{-1.4}$ 2.3 $w > 4.9^{-1.6}_{-1.6}$ 2.7 $w > 4.9^{-1.6}_{-1.4}$ 2.3 $w > 4.9^{-1.6}_{-1.4}$ 2	Oper limitsMasseeee $and 64 \text{ fb}$ exp $observed$ $expected$ $expected$ $expected$ $expected$ $e^{\pm}e^{\pm}$ $e^{\pm}e^{\pm}$ $e^{\pm}e^{\pm}$ $e^{\pm}e^{\pm}$ $e^{\pm}e^{\pm}$ $e^{\pm}e^{\pm}$ Fiducial cross section upper limits $m > 15 \text{ GeV}$ $46\frac{+15}{+12}$ 42 $56\frac{+23}{+15}$ $m > 100 \text{ GeV}$ $24.1\frac{+8.9}{+2.4}$ 23.4 $23.0\frac{+8.1}{-8.6}$ $m > 200 \text{ GeV}$ $8^{+3.4}_{-1.4}$ $m > 200 \text{ GeV}$ $8^{+3.4}_{-1.4}$ 7.5 $8.4\frac{+3.4}{-1.4}$ $m > 200 \text{ GeV}$ $2.9\frac{+1.8}{-1.8}$ 3.9 $m > 200 \text{ GeV}$ $2.9\frac{+1.8}{-1.8}$ 2.4 $3.0\frac{+1.0}{-0.8}$ $m > 200 \text{ GeV}$ $2.9\frac{+1.8}{-1.4}$ $3.0\frac{+1.2}{-0.6}$ $m > 200 \text{ GeV}$ $7.0\frac{+2.9}{-2.8}$ $6.16.6\frac{+1.8}{-1.4}$ $m > 200 \text{ GeV}$ $7.0\frac{+2.9}{-2.9}$ $6.16.6\frac{+1.8}{-1.4}$ $m > 15 \text{ GeV}$ $23.2\frac{+5.8}{-5.8}$ 25.7 8.7 $2.3\frac{+1.6}{-1.4}$ $m > 200 \text{ GeV}$ $2.3\frac{+1.6}{-1.4}$ $M = 2.9\frac{-1.2}{-0.6}$ 2.7 M $4.0\frac{+1.9}{-1.2}$ 4.0 $m > 15 \text{ GeV}$ $23.2\frac{+5.8}{-5.8}$ 25.7 $26.2\frac{+10.06}{-1.6}$ $M = 15 \text{ GeV}$ $23.2\frac{+5.8}{-5.8}$ 25.7 $26.2\frac{+10.6}{-1.4}$ $11.5\frac{+3.3}{-3}$ $m > 200 \text{ GeV}$ $4.9\frac{+1.3}{-1.3}$ 4.0 $4.6\frac{+1.2}{-1.2}$ $M = 100 \text{ GeV}$ $2.9\frac{-1.0}{-0.6}$ 2.7 $2.7\frac{-1.6}{-1.6}$ $m > 200 \text{ GeV}$ $2.9\frac{-1.0}{-0.6}$ 2.7 $2.7\frac{-1.6}{-1.6}$ $M = 100 \text{ GeV}$ $12.9\frac{-1.0}{-0.6}$ 2.7 </th <th>Apper limitsMassee$e\mu$and 64 fbexpobsexpobsFiducial cross section upper limits$Mass range$$expected$$observed$$e^{\pm}e^{\pm}$$e^{\pm}e^{\pm}$$e^{\pm}e^{\pm}$$e^{\pm}e^{\pm}$$m > 15$ GeV$46^{+15}_{-11}$$42$$56^{+23}_{-12}$$m > 100$ GeV$24.1^{+8.9}_{-8.2}$$23.4$$23.0^{+8.1}_{-8.1}$$m > 200$ GeV$8^{+3.24}_{-1.1}$$7.5$$8.4^{+3.4}_{-1.1}$$m > 200$ GeV$29^{+1.0}_{-1.1}$$2.4$$30^{+1.0}_{-0.8}$$m > 300$ GeV$4.5^{+1.8}_{-1.8}$$3.1$$e^{\pm}e^{\pm}$$e^{\pm}e^{\pm}$$e^{\pm}e^{\pm}$$m > 200$ GeV$2.9^{+1.0}_{-0.8}$$2.4$$23.2^{+8.6}_{-5.8}$$25.7$$M$$12.0^{+5.3}_{-5.8}$$18.7$$M$$4.9^{+1.9}_{-1.2}$$4.0$$M$$2.9^{+1.0}_{-0.6}$$2.7$$M$$2.9^{+1.0}_{-0.6}$$2.7$$M$$2.9^{+1.0}_{-0.6}$$2.7$$M$$2.9^{+1.0}_{-0.6}$$2.7$$M$$2.9^{+1.0}_{-0.6}$$2.7$$M$$2.9^{+1.0}_{-0.6}$$2.7$$M$$2.9^{+1.0}_{-0.6}$$2.7$$M$$2.9^{+1.0}_{-0.6}$$2.7$$M$$2.9^{+1.0}_{-0.6}$$2.7$$M$$2.9^{+0.0}_{-0.6}$$2.7$$M$$2.9^{+0.0}_{-0.6}$$2.7$$M$$2.9^{+0.0}_{-0.6}$$2.7$$M$$2.9^{+0.0}_{-0.6}$$2.7$$M$$2.9^{+0.0}_{-0.6}$$2.7$</th> <th>Oper limitsMasseeeµµand 64 fbexpobsexpobsexpobsexpFiducial cross section upper limits$100 \text{ GeV}$$24.1\frac{+8}{+2}$$23.4$$23.0\frac{+8.6}{+2}$$24.0\frac{+8.6}{+4}$$w > 200 \text{ GeV}$$28\frac{+2.1}{+1.8}$$7.5$$8.4\frac{+3.4}{+1.4}$$9.8$$4.3\frac{+1.6}{+1.4}$$w > 200 \text{ GeV}$$28\frac{+2.1}{+1.8}$$7.5$$8.4\frac{+3.4}{+1.4}$$9.8$$4.3\frac{+1.6}{+1.4}$$w > 200 \text{ GeV}$$28\frac{+2.1}{+1.8}$$7.5$$8.4\frac{+3.4}{+1.4}$$9.8$$4.3\frac{+1.6}{+1.4}$$w > 200 \text{ GeV}$$28\frac{+2.1}{+1.8}$$7.5$$8.4\frac{+3.4}{+1.4}$$8.4\frac{+2.4}{+0.6}$$w > 200 \text{ GeV}$$29\frac{+1.8}{+1.8}$$22.8$$34.9\frac{+12.2}{+1.8}$$3.11$$1.7\frac{+0.6}{+0.6}$$w > 200 \text{ GeV}$$29\frac{+1.8}{+1.8}$$22.8$$34.9\frac{+12.2}{+1.8}$$34.11$$15.0\frac{+3.3}{+3.6}$$w > 200 \text{ GeV}$$29\frac{+1.8}{+1.8}$$22.8$$34.9\frac{+12.2}{+1.8}$$34.11$$15.0\frac{+3.3}{+3.6}$$w > 200 \text{ GeV}$$3.7\frac{+1.8}{+1.8}$$22.9\frac{+3.6}{+1.8}$$32.9\frac{+3.6}{+1.8}$$32.9\frac{+3.6}{+1.8}$$w > 12.0\frac{+5.3}{-2.8}$$18.7$$100 \text{ GeV}$$16.1\frac{+4.3}{+3.4}$$12.0\frac{+4.5}{+1.8}$$84.2\frac{+2.4}{+1.8}$$w > 400 \text{ GeV}$$3.7\frac{+1.9}{+1.9}$$4.0$$4.2\frac{+1.9}{+1.2}$$2.9\frac{+3.6}{+1.8}$$2.5$$1.5\frac{+3.6}{+1.8}$$w > 12.0\frac{+5.3}{-2.8}$$18.7$$10.2\frac{+2.9}{+1.9}$$10.2\frac{+2.9}{+2.8}$$10.2\frac{+2.9}{+1.8}$$10.2\frac{+2.9}{+1.8}$$10.2\frac{+2.9}{+1.8}$<t< th=""></t<></th>	Apper limitsMassee $e\mu$ and 64 fb exp obs exp obsFiducial cross section upper limits $Mass range$ $expected$ $observed$ $e^{\pm}e^{\pm}$ $e^{\pm}e^{\pm}$ $e^{\pm}e^{\pm}$ $e^{\pm}e^{\pm}$ $m > 15$ GeV 46^{+15}_{-11} 42 56^{+23}_{-12} $m > 100$ GeV $24.1^{+8.9}_{-8.2}$ 23.4 $23.0^{+8.1}_{-8.1}$ $m > 200$ GeV $8^{+3.24}_{-1.1}$ 7.5 $8.4^{+3.4}_{-1.1}$ $m > 200$ GeV $29^{+1.0}_{-1.1}$ 2.4 $30^{+1.0}_{-0.8}$ $m > 300$ GeV $4.5^{+1.8}_{-1.8}$ 3.1 $e^{\pm}e^{\pm}$ $e^{\pm}e^{\pm}$ $e^{\pm}e^{\pm}$ $m > 200$ GeV $2.9^{+1.0}_{-0.8}$ 2.4 $23.2^{+8.6}_{-5.8}$ 25.7 M $12.0^{+5.3}_{-5.8}$ 18.7 M $4.9^{+1.9}_{-1.2}$ 4.0 M $2.9^{+1.0}_{-0.6}$ 2.7 M $2.9^{+0.0}_{-0.6}$ 2.7	Oper limitsMasseeeµµand 64 fb exp obsexpobsexpobsexpFiducial cross section upper limits 100 GeV $24.1\frac{+8}{+2}$ 23.4 $23.0\frac{+8.6}{+2}$ $24.0\frac{+8.6}{+4}$ $w > 200 \text{ GeV}$ $28\frac{+2.1}{+1.8}$ 7.5 $8.4\frac{+3.4}{+1.4}$ 9.8 $4.3\frac{+1.6}{+1.4}$ $w > 200 \text{ GeV}$ $28\frac{+2.1}{+1.8}$ 7.5 $8.4\frac{+3.4}{+1.4}$ 9.8 $4.3\frac{+1.6}{+1.4}$ $w > 200 \text{ GeV}$ $28\frac{+2.1}{+1.8}$ 7.5 $8.4\frac{+3.4}{+1.4}$ 9.8 $4.3\frac{+1.6}{+1.4}$ $w > 200 \text{ GeV}$ $28\frac{+2.1}{+1.8}$ 7.5 $8.4\frac{+3.4}{+1.4}$ $8.4\frac{+2.4}{+0.6}$ $w > 200 \text{ GeV}$ $29\frac{+1.8}{+1.8}$ 22.8 $34.9\frac{+12.2}{+1.8}$ 3.11 $1.7\frac{+0.6}{+0.6}$ $w > 200 \text{ GeV}$ $29\frac{+1.8}{+1.8}$ 22.8 $34.9\frac{+12.2}{+1.8}$ 34.11 $15.0\frac{+3.3}{+3.6}$ $w > 200 \text{ GeV}$ $29\frac{+1.8}{+1.8}$ 22.8 $34.9\frac{+12.2}{+1.8}$ 34.11 $15.0\frac{+3.3}{+3.6}$ $w > 200 \text{ GeV}$ $3.7\frac{+1.8}{+1.8}$ $22.9\frac{+3.6}{+1.8}$ $32.9\frac{+3.6}{+1.8}$ $32.9\frac{+3.6}{+1.8}$ $w > 12.0\frac{+5.3}{-2.8}$ 18.7 100 GeV $16.1\frac{+4.3}{+3.4}$ $12.0\frac{+4.5}{+1.8}$ $84.2\frac{+2.4}{+1.8}$ $w > 400 \text{ GeV}$ $3.7\frac{+1.9}{+1.9}$ 4.0 $4.2\frac{+1.9}{+1.2}$ $2.9\frac{+3.6}{+1.8}$ 2.5 $1.5\frac{+3.6}{+1.8}$ $w > 12.0\frac{+5.3}{-2.8}$ 18.7 $10.2\frac{+2.9}{+1.9}$ $10.2\frac{+2.9}{+2.8}$ $10.2\frac{+2.9}{+1.8}$ $10.2\frac{+2.9}{+1.8}$ $10.2\frac{+2.9}{+1.8}$ <t< th=""></t<>

Possible Models

- Ieft-right symmetric models
- Higgs triplet models
- Iittle Higgs model
- fourth-family quarks
- supersymmetry
- universal extra dimensions

Acceptances: 43% - 65 %

Inclusive Same-Sign Dilepton Search: H^{++/--} Limits

Models explaining non-zero neutrino masses predict H^{++/--}

- e.g. minimal type II seesaw model
 - additional scalar field

■ triplet (under SU(2)_L with Y=2): H^{++/--}, H^{+/-}, H⁰

Doubly Charged Higgs Limits

Used e.g. limits on doubly charged Higgs

C. Issever, University of Oxford

arXiv:1210.5070

Doubly Charged Higgs Limits

Example of more optimized search

arXiv:1207.2666

Includes also *τ* -channel and associate production.

General 3 Charged Lepton (e/µ/ τ) Search

ATLAS-CONF-2013-070

- complements previous searches model independent
- 4 inclusive signal regions

20.3 fb⁻¹

new

Flavor Chan.	Z Chan.	E	Observed		
$\geq 3e/\mu$	off-Z	$260 \pm$	$10 \pm$	40	280
$2e/\mu + \ge 1\tau_{\text{had}}$	off-Z	$1200 \pm$	$10 \pm$	290	1193
$\geq 3e/\mu$	on-Z	$3100 \pm$	$40 \pm$	500	3199
$2e/\mu + \ge 1\tau_{\text{had}}$	on-Z	$17000 \pm$	$40 \pm$	4000	14733

- 100 exclusive signal regions
 - H_T^{leptons} , H_T^{jets}
 - Min p_T^I
 - $m_{eff} = |H_t^{jets}| + |E_t^{miss}| + |p_T|$
 - for on-Z: m_T^W
 - number of b-jets

Selections

2 isolated electrons or muons, $p_{T1} > 26 \text{ GeV}, p_{T2} > 15 \text{ GeV}$

 3^{rd} lepton: e or μ or τ_{had} p_T(e, μ)>15 GeV, p_T^{vis}(τ_{had})>20 GeV

akt4 jets with $p_T > 30 \text{ GeV}$

General 3 Charged Lepton (e/μ/ τ) Search ATLAS-CONF-2013-070

General 3 Charged Lepton (e/µ/ τ) Search

ATLAS-CONF-2013-070

C. Issever, University of Oxford

new

ATLAS Exotics Summary

Limits pushed into 1 TeV regime

We are at the beginning....

Up to now, small parton luminosity at high masses Large discovery potential: 13 TeV

Conclusion

- Role of models in Exotics
 - Models are used map our search reach
 - They give us some guidance where to look
 - But, Exotics searches are mainly model-independent.
- Exotics searches coverage
 - Vast range of final states
 - Vast range of models
 - Searches with H boson in final state added
- Searches will continue
 - Continue exploration beyond TeV regimes
 - Push σ-limits at **low invariant masses** down.

Generic 3 Lepton Search

ATLAS-CONF-2013-070

C. Issever, University of Oxford

Generic 3 Lepton Search

ATLAS-CONF-2013-070

Generic 3 Lepton Search

ATLAS-CONF-2013-070

Mono Jet Signal Region Definitions

Signal regions	SR1	SR2	SR3	SR4		
Common requirements	$\begin{array}{l l} \text{Data quality} + \text{trigger} + \text{vertex} + \text{jet quality} \\ \eta^{\text{jet1}} < 2.0 + \Delta\phi(\mathbf{p}_{\text{T}}^{\text{miss}}, \mathbf{p}_{\text{T}}^{\text{jet2}}) > 0.5 + N_{\text{jets}} \leq 2.0 \\ \end{array}$					
	lepton veto					
$E_{\mathrm{T}}^{\mathrm{miss}}, p_{\mathrm{T}}^{\mathrm{jet1}} >$	120 GeV	$220~{\rm GeV}$	$350 {\rm GeV}$	$500 {\rm GeV}$		

"Although the results of this analysis are interpreted in terms of the ADD model and WIMP pair production, the event selection criteria have not been tuned to maximize the sensitivity to any particular BSM scenario. To maintain sensitivity to a wide range of BSM models, four sets of overlapping kinematic selection criteria, designated as SR1 to SR4, are defined (table 2)."

Limits on Dark Matter – Mono Jet

67

Limits on the annihilation rate of WIMPs

Search for Heavy Resonance: dilepton channel

Limits as a function of RS graviton mass and coupling m(RS graviton, k/MPI = 0.1) > 2.16 TeV at 95% CL

Jet Grooming

- "Pruning":
- Start with a fat jet (R ~ 1 or more)
- Run k_t or C/A algorithm on clusters within the fat jet
- At each step, if merging of two clusters fails, remove cluster with smallest pT

- "Trimming":
- Start with a fat jet (R ~ 1 or more)
- Run k_t algorithm on clusters within the fat jet
- Keep only jets with pT > pT(fat jet) . f_{cut}

HEPTopTagger (Filtering)

- 1 Decompose until $m_{j_i} < 30 \,\text{GeV}$ with mass drop requirement $m_{j_i} < \mu m_{\text{large jet}}$
- 2 Investigate 3 subjets and their constituents
- 3 Re-cluster using C/A with parameter $R = \min(0.3, \min_{ij} \Delta R(j_i, j_j)/2)$

S. Fleischmann

- 4 Use only 5 hardest subjets of last step
- 5 Built exactly 3 subjets from the selected constituents
Standard Model Lagrangian

Above: Describes gauge fields and interactions Ø determined by gauge quantum numbers

Standard Model Lagrangian

- Responsible for mass and mixing of quark masses
- Responsible for charged lepton masses
- Generation index: i, j = 1,2,3
- Why 3 families?
- No neutrino masses or mixing included

Standard Model Lagrangian

$$\begin{split} \mathcal{L}_{SM} &= -\frac{1}{4g'^2} B_{\mu\nu} B^{\mu\nu} - \frac{1}{2g^2} \text{Tr}(W_{\mu\nu} W^{\mu\nu}) - \frac{1}{2g_s^2} \text{Tr}(G_{\mu\nu} G^{\mu\nu}) \\ &+ \bar{Q}_i i \not{D} Q_i + \bar{L}_i i \not{D} L_i + \bar{u}_i i \not{D} u_i + \bar{d}_i i \not{D} d_i + \bar{e}_i i \not{D} e_i \\ &+ (Y_u^{ij} \bar{Q}_i u_j \tilde{H} + Y_d^{ij} \bar{Q}_i d_j H + Y_l^{ij} \bar{L}_i e_j H + \text{h.c.}) \\ &+ (D_{\mu} H)^{\dagger} (D^{\mu} H) - \lambda (H^{\dagger} H)^2 - m^2 H^{\dagger} H + \frac{\theta}{32\pi^2} \epsilon^{\mu\nu\rho\sigma} \text{Tr}(G_{\mu\nu} G_{\rho\sigma}). \end{split}$$

Strong CP Problem in SM

- Why is $\theta < 1.2 \times 10^{-10}$???
- Natural value ~ 1

 θ term in QCD Periodic: 0 - 2 π Violates T and CP

Ditau Discriminant

Transverse mass of visible decay products of tau's and E_{T}^{miss}

$$m_{\rm T}^{\rm tot} = \sqrt{2p_{\rm T1}p_{\rm T2}C} + 2|E_{\rm T}^{\rm miss}|p_{\rm T1}C_1 + 2|E_{\rm T}^{\rm miss}|p_{\rm T2}C_2$$

$$= 1 - \cos\Delta\varphi(\tau_1, \tau_2)$$

$$C_1 = 1 - \cos\Delta\varphi(\tau_1, E_{\rm T}^{\rm miss})$$

$$C_2 = 1 - \cos\Delta\varphi(\tau_2, E_{\rm T}^{\rm miss})$$

Backup Slide

Ditau Search

	$Z/\gamma^* \to \tau \tau$	Multijet	W/Z+jets	Тор	Diboson	SM total	Data	Z' _{SSM} (1750)
Preselection	270 ± 50	630 ± 100	80 ± 50	27 ± 15	1.1 ± 0.6	1000 ± 140	1016	9.4 ± 1.5
$\Delta \phi(au_1, au_2)$	120 ± 20	420 ± 70	48 ± 30	13 ± 6	0.1 ± 0.1	600 ± 80	577	9.2 ± 1.5
OS	113 ± 18	210 ± 40	34 ± 22	10 ± 4	0.1 ± 0.1	370 ± 50	372	8.7 ± 1.4
$m_{\rm T}^{\rm tot} > 300~{ m GeV}$	102 ± 17	96 ± 17	28 ± 19	7 ± 3	0.1 ± 0.1	230 ± 40	235	8.7 ± 1.4
$m_{\rm T}^{\rm tot} > 350~{ m GeV}$	63 ± 11	40 ± 9	18 ± 12	5.0 ± 1.9	0.1 ± 0.0	126 ± 21	123	8.6 ± 1.4
$m_{\rm T}^{\rm tot} > 400~{ m GeV}$	37 ± 7	18 ± 4	10 ± 7	2.0 ± 1.1	< 0.1	66 ± 12	59	8.4 ± 1.4
$m_{\rm T}^{\rm tot} > 450~{ m GeV}$	22 ± 4	9 ± 3	6 ± 4	1.2 ± 0.6		38 ± 7	31	8.3 ± 1.4
$m_{\rm T}^{\rm tot} > 500~{ m GeV}$	14 ± 3	4.4 ± 1.6	4 ± 3	0.6 ± 0.3		23 ± 5	20	8.0 ± 1.3
$m_{\rm T}^{\rm tot} > 550~{ m GeV}$	8.9 ± 1.8	2.7 ± 1.1	1.8 ± 1.3	0.4 ± 0.3		14 ± 3	12	7.7 ± 1.3
$m_{\rm T}^{\rm tot} > 600~{ m GeV}$	5.9 ± 1.2	1.8 ± 0.8	1.1 ± 0.8	0.1 ± 0.1		9.0 ± 1.8	5	7.4 ± 1.3
$m_{\rm T}^{\rm tot} > 650~{ m GeV}$	4.1 ± 0.8	1.0 ± 0.5	0.7 ± 0.5	0.1 ± 0.1		5.9 ± 1.2	3	7.1 ± 1.2
$m_{\rm T}^{\rm tot} > 700~{ m GeV}$	2.8 ± 0.6	0.6 ± 0.3	0.5 ± 0.3	< 0.1		3.9 ± 0.8	0	6.7 ± 1.1
$m_{\rm T}^{\rm tot} > 750~{ m GeV}$	1.9 ± 0.4	0.5 ± 0.3	0.3 ± 0.2			2.8 ± 0.6	0	6.3 ± 1.1
$m_{\rm T}^{\rm tot} > 800~{ m GeV}$	1.4 ± 0.3	0.3 ± 0.2	0.2 ± 0.2			2.0 ± 0.4	0	6.0 ± 1.0
$m_{\rm T}^{\rm tot} > 850~{ m GeV}$	1.0 ± 0.2	0.2 ± 0.1	0.2 ± 0.1			1.4 ± 0.3	0	5.6 ± 1.0
$m_{\rm T}^{\rm tot} > 900~{ m GeV}$	0.7 ± 0.2	0.1 ± 0.1	0.1 ± 0.1			1.0 ± 0.2	0	5.2 ± 0.9

Dilepton Resonance Search: Trigger Strategy

ATLAS

ee channel

- Diphoton trigger
- $E_T > 35$ GeV and $E_T > 25$ GeV

µµ channel

- Single muon triggers
- E_T > 24 GeV or E_T > 36 GeV

CMS

ee channel

- Dielectron trigger
- Both clusters w $E_T > 33$ GeV

µµ channel

- single muon trigger
- E_T > 40 GeV

Selection for Di-Electron Channel

Problem: jets fake electrons Use isolation to reduce fakes

Electron Isolation I_{conesize}

	ATLAS	CMS		
leading	I ^{calo} _{0.2} <0.7%·E _T + 5 GeV	I ^{tracker} 0 3<5 GeV	I ^{Calo} _{0.3} <3%⋅E _T	
subleading	I ^{calo} _{0.2} <2.2%⋅E _T + 6 GeV	0.0		

Acceptance x Efficiency after all Selections

ATLAS CMS

Axε(m = 2 TeV) = **73%** Axε(m = 2.5 TeV) = **67%**

Dilepton Resonance Search:: µµ selections

ATLAS

- Single muon triggers
- p_T > 25 GeV
- **■** |η|<2.4
- Suppress cosmic rays
 - |d₀| < 0.2 mm
 - |z₀-z(vertex)|<1 mm</p>
- Suppress jets faking µ's
 - $\sum p_{T}(\Delta R < 0.3) < 5\% \cdot p_{T}$
- Require opposite charge

CMS

- Single muon trigger
- p_T > 45 GeV
- |η|<2.4
- Suppress cosmic rays |d₀| < 0.2 mm |z₀-z(vertex)|<24 cm
- Suppress jets faking µ's
 - ► $\sum p_{T}(\Delta R < 0.3) < 10\% \cdot p_{T}$
 - |z₀-z(vertex)|< 0.2mm</pre>
- Require opposite charge

Very different

 $Ax\epsilon(m = 2 \text{ TeV}) = 46\%$ $Ax\epsilon(m = 2.5 \text{ TeV}) = 80\%$

Dilepton Resonance Search: Backgrounds ee

(a) Drell-Yan

(c) $W\gamma$

Dilepton Resonance Search: Backgrounds ee

Dilepton Resonance Search: Backgrounds µµ

(a) Drell-Yan

(c) $W\gamma$

nal photon line), γ +jets

Dilepton Resonance Search: Backgrounds µµ

Heavy Resonances Search: 8 TeV Dileptons Backgrounds

- SM Drell-Yan: γ*/Z-> I⁺I⁻
 - shape taken from Monte Carlo
 - normalisation taken from Z peak in data
- t-tbar:
 - where tt goes to e+e-, mu+mu-
 - est. from MC, cross-checked in data
 - also includes Z->TT, WW, WZ
- Jet Background:
 - di-jet, W+jet events where the jets are misidentified as electrons/muons
- Cosmic Ray Background:
 - muons from cosmic rays
 - estimated <0.1 event after vertex and angular difference requirements

Heavy Resonances Search: 8 TeV Dileptons

ATLAS-CONF-2013-017

m_{ee} [GeV]	110 - 200	200 - 400	400 - 800	800 - 1200	1200 - 3000	3000 - 4500
Z/γ^*	119000 ± 8000	13700 ± 900	1290 ± 80	68 ± 4	9.8 ± 1.1	0.008 ± 0.005
$t\overline{t}$	7000 ± 800	2400 ± 400	160 ± 60	2.5 ± 0.6	0.11 ± 0.04	< 0.001
Diboson	1830 ± 210	660 ± 160	93 ± 33	4.8 ± 0.8	0.79 ± 0.26	0.005 ± 0.004
Dijet, W + jet	3900 ± 800	1260 ± 310	230 ± 110	8.6 ± 2.4	0.9 ± 0.6	0.004 ± 0.006
Total	131000 ± 8000	18000 ± 1100	1780 ± 150	84 ± 5	11.6 ± 1.3	0.017 ± 0.009
Data	133131	18570	1827	98	10	0

Analysis: P(ee) = 18%

Analysis: $P(\mu\mu) = 98\%$

$m_{\mu\mu}$ [GeV]	110 - 200	200 - 400	400 - 800	800 - 1200	1200 - 3000	3000 - 4500
Z/γ^*	111000 ± 8000	11000 ± 1000	1000 ± 100	49 ± 5	7.3 ± 1.3	0.033 ± 0.029
tt	5900 ± 900	1900 ± 400	140 ± 60	2.7 ± 0.7	0.16 ± 0.08	< 0.001
Diboson	1520 ± 190	520 ± 140	62 ± 26	2.8 ± 1.0	0.38 ± 0.28	0.002 ± 0.003
Total	118000 ± 8000	13300 ± 1100	1160 ± 120	55 ± 5	7.8 ± 1.3	0.035 ± 0.029
Data	118701	13349	1109	48	8	0

No deviation from expectation found.

Signal Shapes and Parton Luminosities

39

 $d\hat{\sigma}/d(\cos\hat{\theta})\propto\sin^{-4}(\hat{\theta}/2)$ t-channel Spin-1 exchange

$$\chi = \frac{1 + |\cos\hat{\theta}|}{1 - |\cos\hat{\theta}|} \sim \frac{1}{1 - |\cos\hat{\theta}|} \propto \frac{\hat{s}}{\hat{t}}$$

$$\frac{\mathrm{d}\hat{\sigma}}{\mathrm{d}\chi} \propto \frac{\alpha_s^2}{\hat{s}} \quad (\hat{s} \text{ fixed}) \quad \hat{s} = m_{jj} \quad \text{Constant in } \chi \text{ for fixed } m_{jj}$$

arXiv:1210.1718

arXiv:1210.1718

$$F_{\chi}(m_{jj}) \equiv \frac{\mathrm{d}N_{\mathrm{central}}/\mathrm{d}m_{jj}}{\mathrm{d}N_{\mathrm{total}}/\mathrm{d}m_{jj}},$$

Models and Limits:

 Quark contact interaction (quark compositeness)

Λ>7.6 TeV (7.7 TeV)

- Quantum Black holes
 M_D>4.1 TeV (4.2 TeV) n=6
- C. Issever, University of Oxford

Top Reconstruction @ LHC: 3 Regimes

At rest: Mtt<500 GeV

Mono-jet: Mtt>700GeV

Transition region:

ATL-PHYS-PUB-2008-010

M. Villaplana (IFIC) - Boost2012 - Valencia

27/07/12 • 4

Jet Substructure: jet mass

Use jet substructure to "tag" boosted tops

Efficiency Comparisons

(b) 1.0 TeV Z'

Efficiency Comparisons

(d) 2.0 TeV Z'

Ttbar search: Object Selection

Jets

- Small jets: pT > 25 GeV && |η|<2.5</p>
- Large jets: pT > 300 GeV && |η| < 2.0</p>
- Require that at least one of the small jets is b-tagged

Electrons

- pT > 25 GeV && |η|<1.37, 1.52<|η|<2.47</p>
- Mini Isolation: I_{mini} < 0.05 E_T
- z-impact parameter within 2mm of PV

Muons

- pT > 25 GeV && |η|<2.5</p>
- I_{mini} < 0.05 pT</p>
- z-impact parameter within 2mm of PV

Ttbar Selections Continued

- Optimized for high-pt tops && reduce ttbar bkg
- High-pt single electron or muon trigger
- I primary vertex with ≥ 5 tracks of $p_T > 0.4$ GeV
- Electron channel

• $ME_T > 30 \text{ GeV \& } m_T = \sqrt{2p_T M E_T (1 - cos \Delta \varphi)} > 30 \text{ GeV}$

Muon channel

ME_T > 20 GeV && ME_T+m_T > 60 GeV

Resolved Selection

 \geq 4 small jets, j, with p_T> 25 GeV, |η|<2.5

Merged Selection

3 small jets, j, with p_T > 25 GeV, $|\eta|$ <2.5

Geometrical Acceptance + Selection Efficiencies

Reconstructed top mass distributions

Semi-Leptonically decaying top

Hadronically decaying top

Reconstructed splitting scale

$$\sqrt{d_{ij}} = \min(p_{Ti}, p_{Tj}) \times \Delta R_{ij}$$

C. Issever, University of Oxford

106

Fine-Tuning Problem in Electromagnetism

 $r_e \lesssim 10^{-17}$ cm \implies $\Delta E \gtrsim 10$ GeV

0.511 = -9999.489 + 10000.000 MeV

Fine tuning!

Murayama hep-ph/9410285

Fine-Tuning Problem in Electromagnetism

- Picture not complete:
 - Positron cancels 1/r_e term
 - New symmetry:
 - particle/anti-particle

$$(m_e c^2)_{\text{observed}} = (m_e c^2)_{\text{bare}} \left[1 + \frac{3\alpha}{4\pi} \log \frac{\hbar}{m_e c r_e} \right]$$

Correction to bare mass becomes small
Supersymmetry

Same problem with Higgs

$$h \sim h \sim h = -6 \frac{h_t^2}{4\pi^2} \frac{1}{r_H^2} \sim (100 \text{ GeV})^2$$

125 GeV = (huge number)-(huge number) even more fine tuned!

Composite Higgs

But there is another way....look at QCD

Pion mass is not divergent.

Why?

It is a composite particle!

Assume Higgs is a composite particle

- Changes couplings
- Introduces new partners to top quarks
- Vector-like quarks...
 - (both chiralities same under SU(2)xU(1)
- Solves fine-tuning problem....

C. Issever, University of Oxford

4th Generation and Heavy Quarks

Graviton Production in Extra Dimensions

ME_T Distribution of Mono Jet Analysis

ATLAS-CONF-2012-147

Exclusion Limits

Exclusion Limits on M_D from CMS

Semi-classical regime out of reach of the LHC LHC operates in Quantum Gravitational regime

Mono Photon Searches for Extra Dimensions

Etmiss=218.3 GeV Etphoton=218 GeV

Run Number: 179710, Event Number: 19174449 Date: 2011-04-15 03:48:32 CEST

The Discriminant

Limits on M_D in Mono Photon Search

DM-nucleon scattering cross sections

Mono photon analysis

arXiv:1209.4625

Long lived particles in ATLAS

Limits $h \rightarrow \pi_v \pi_v$

Displaced Muonic Lepton Jets from Light Higgs

- Search for long-lived neutral particles
- Limits on

arXiv:1210.0435

- $H \rightarrow$ hidden-sector neutral long-lived particles
- Focus on 100 GeV to 140 GeV mass range
 - Derive constraints on additional Higgs-like bosons
 - placing bounds on BR of discovered 126 GeV resonance into a hidden sector
- Relevant for other distinct models
 - heavier Higgs boson doublets,
 - singlet scalars
 - Z' that decay to a hidden sector

C. Issever, University of Oxford

Displaced Muonic Lepton Jets from Light Higgs

arXiv:1210.0435

- Neutral particles
 - with large decay lengths
 - with collimated final states
 - challenge for the trigger and for the reconstruction

- Ξξξξξ
- dkdkdkdkd

C. Issever, University of Oxford