Searches for resonances decaying to Standard Model third generation quarks and leptons

Oana Boeriu University of the Witwatersrand

On behalf of the ATLAS Collaboration

SUSY 2013 26-31 August 2013 Trieste, Italy

Outline

Presenting results from ATLAS @ 8 TeV for particle searches:

 $W' \rightarrow t\bar{b}$ (ATLAS-CONF-2013-050)

$\ll Z'/g_{KK} \rightarrow t\bar{t} \rightarrow W^+b W^-\bar{b} (ATLAS-CONF-2013-052)$

* High-mass $Z'_{SSM} \rightarrow \tau_{had}\tau_{had}$ resonances (ATLAS-CONF-2013-066)

LHC luminosity & the ATLAS detector

ATLAS exotic searches summary

Focusing on recent results with ~14 - 20 fb⁻¹ (2012 data @ 8 TeV): <u>https://twiki.cern.ch/twiki/bin/view/AtlasPublic</u>

*Only a selection of the available mass limits on new states or phenomena shown

Searches with 3rd generation quarks & leptons

3rd generation quarks:

- Questions on mass hierarchy within SM
- ❀ top & bottom quarks → preferred final state in case of mass-dependent couplings

Challenges:

- * Experimental identification of *b*-jets, especially at high p_T
- * Theory and modeling uncertainties in top physics
- Substructure-based top-tagging & lepton isolation for boosted tops

Tau Leptons:

- Backgrounds to leptons reduced w.r.t. hadronic signatures, thus smaller cross-sections can be probed
- Availability of known peaks to test background predictions and detector performance

Challenges:

- Small leptonic branching ratios at high masses
- ** Soft leptons for some models \rightarrow difficult detection
- # Jets faking leptons are not always well modeled

Search for $W' \rightarrow t\overline{b} \rightarrow lvb\overline{b}$ in pp collisions at $\sqrt{s} = 8$ TeV

- This search uses $\mathcal{L} = 14.3$ fb⁻¹and looks at final states with <u>electrons</u> or <u>muons</u>.
- Several BSM models predict W bosons:
 - * Kaluza-Klein excitations of the SM W boson, techni-colour models, Little Higgs
 - In many BSM theories the W' boson is expected to couple more strongly to the 3rd generation quarks than to the 1st or 2nd
 - Easier to look for to final states than pure jj
- * The analysis uses a multivariate method based on *boosted decision trees* (BDT)
- The search range covers $0.5 < M_W' < 3.0$ TeV, with R- or L-handed W'-boson chiralities.

Backgrounds, triggers & Event selection

- Main contribution: $t\bar{t}$ production, W+jets, W+light jets or W+ $c/c\bar{c}$ ($b\bar{b}$) processes (possible misidentification of light-quarks as b jets)
- Smaller contribution: single top production (t-channel, Wt and s-channel), WW, WZ, ZZ, Z+jets events, multijet events

Triggers:

- # electron object: $E_T > 60$ GeV, or $E_T > 24$ GeV with an isolation requirement
- # muon object: $p_T > 36$ GeV, or $p_T > 24$ GeV with an isolation criterion

Event Selection:

- Data-quality requirements (proper functioning of the detector and trigger subsystems, as well as LHC stable beam periods)
- ** Isolated electron candidates with $p_T > 30$ GeV, $|\eta| < 2.47$ excluding $1.37 < |\eta| < 1.52$; muon candidates should have a $p_T > 30$ GeV and $|\eta| < 2.5$

ATLAS-CONF-2013-050

Event selection contd.

* Jets are reconstructed using the anti- k_t algorithm with R = 0.4, with p_T > 25 GeV and $|\eta| < 2.5$

- *b*-jets identified using a NN-based *b*-tagger (70% eff. and light-jets rejection factor = 135)
- Events must pass a selection criteria,
 defined as E_T^{miss} + m_T(W) > 60 GeV

Analysis strategy

BDT is used for discrimination of signal to background

- Main discriminants: m_{tb}, p_T(top) out of 14 variables (2-jet) / 13 variables (3-jet)
- separation between lepton and b-jet

BDT output and pT spectrum for data, signal and background in a signal region with 2 *b*-jets

ATLAS-CONF-2013-050

Results

[∞] No data excess over the expected SM background is observed in the BDT output
→ set limits on W' with SM couplings (effective model) @ 95% CL:

 $m(W'_L) > 1.74 \text{ TeV}$

	W'_I		W'_R		
W' mass (TeV)	Theory	Õbs. limit	Theory	Öbs. limit	
0.5	17	4.0	23	2.2	
1.0	1.0	0.24	1.4	0.17	
1.5	0.13	0.075	0.17	0.051	
2.0	0.022	0.064	0.028	0.056	
2.5	0.0044	0.11	0.0054	0.10	
3.0	0.0011	0.20	0.0013	0.19	

 $m(W'_R) > 1.84 \text{ TeV}$

Search for *tī* resonances decaying to leptons and jets

- * Narrow resonance: width 1.2% of the mass.
- Strong coupling to first and third generation of quarks.
- * The model explains the top mass and EWSB.
 - <u>**Randall-Sundrum</u>**: Kaluza-Klein gluons arise in this model.</u>
 - Broad resonance: width 15% of the mass.
 - Strongly coupled to the top quark.
- This model introduces a single warped extra dimension and explains the hierarchy problem.

ATLAS-CONF-2013-052

Backgrounds & analysis strategy

* Data: collected in 2012 @ 8 TeV with $\mathcal{L} = 14$ fb⁻¹.

- * BG: SM $t\bar{t}$, W/Z + jets (shape), single top and di-boson \rightarrow estimated from MC
- ₩ + jets normalization (charge-asymmetry of W) and multijet (matrix method)→ estimated from data
- * Event selection: $t\bar{t}$ events are selected in the *e* or μ +jets channels using two different topologies: boosted and resolved.

- Discriminant variable: *tt* invariant mass
- Limits: computed using a Bayesian technique

Event selection

*** Lepton selection:** one isolated lepton

** Electron: $E_T > 25$ GeV and $|\eta| < 2.47$ (excluding 1.37 < $|\eta| < 1.52$)

Muon: $p_T > 25$ GeV and $|\eta| < 2.5$

Multijet background rejected by:

e-channel: $E_T^{miss} > 30 \text{ GeV}$ and $m_T > 30 \text{ GeV}$

μ -channel: $E_T^{miss} > 20$ GeV, $E_T^{miss} + m_T > 60$ GeV

$$m_T = \sqrt{2p_T E_T^{miss}(1 - \cos \Delta \phi)}$$

Jet selection

* anti- k_t algorithm used

* small-radius jets (R = 0.4): $p_T > 25$ GeV, $|\eta| < 2.5$

* large-radius jets with trimming applied (R = 1.0): $p_T > 300$ GeV and $|\eta| < 2.0$

Boosted: ≥1 small-radius jet: highest p_T jet with $R(\ell; j_{0.4}) < 1.5$

≥1 large-radius jet: m_{jet} > 100 GeV, $\sqrt{d_{12}}$ > 40 GeV, $\Delta R(j_{1.0}, j_{0.4})$ > 1.5 & $\Delta \Phi(j_{1.0}; \ell)$ > 2.3

** or resolved: 4 small-radius jets: $p_T > 25$ GeV, $|\eta| < 2.5$

* or 3 small-radius jets: accepted if m_{jet} > 60 GeV for one of these jets

Resolved topology is applied only if the boosted selection failed

 $\gg \geq 1$ b-tagged jet

Data & BG

- $t\bar{t}$ invariant mass computed from the four-momenta of the objects in the event
 - **Resolved**: uses neutrino p_Z and a χ^2 algorithm to select the best assignment to jets
 - Boosted: no ambiguity in the assignment of jets
 - * Hadronic decay \rightarrow large radius jet
 - Semi-leptonic decay \rightarrow Neutrino p_Z, high-p_T lepton and a small radius jet

ATLAS-CONF-2013-052

Resolved + boosted distributions

$e + \mu$	Resolved	Boosted		
Predicted	$283\ 000\pm 39\ 000$	$5\ 600\pm 1\ 200$		
Data	280 251	5 122		

Observed and expected number of background events

Good agreement between data and expected background within uncertainties

Limits on Z' and gkk

Expected exclusion: 0.5 TeV < m_{Z'} < 1.9 TeV Expected exclusion: 0.5 TeV < *g_{KK}* < 2.1 TeV

Search for high-mass Thad Thad resonances

- Sequential Standard Model (SSM) is a benchmark model that contains a heavy neutral gauge boson, Z'SSM, with the same couplings to fermions as the Z boson of the SM
- ** Most stringent limits on Z'_{SSM} in the e^+e^- and $\mu^+\mu^-$ decay channels combined are 2.79 TeV and $\tau_{ha\partial}\tau_{ha\partial}$ 1.4 TeV (5 fb⁻¹).
- ✤ In this analysis using integrated luminosity of 19.5 fb⁻¹.
- Tau leptons good probe for new particles whose couplings increase with mass.
 - ** Single-tau trigger with E_T threshold of 125 GeV
 - Primary vertex with at least four associated tracks, each with pT > 0.5 GeV
- #BG: Z/γ* → ττ, W+jets, tt̄, diboson, Wt and s-channel single top events

ATLAS-CONF-2013-066

Event selection

Hadronic tau decays are defined as reconstructed jets with either one or three associated tracks reconstructed in the inner detector

- Hadronic tau decays are identified with a multivariate algorithm that employs BDTs to discriminate against quark and gluon-initiated jets using shower shape and tracking information; the taus must pass a loose BDT tau ID
- Tau candidates: $p_T \ge 50 \text{ GeV } \&$ to be within $|\eta| < 2.47$ (with $1.37 < |\eta| < 1.52$ excluded)
- The analysis vetoes electrons and muons:
 - * e-candidates: pass electron veto, p_T > 15 GeV and |η| < 2.47</p>
 - # µ-candidates: pT > 10 GeV and $|\eta| < 2.5$
- Jets are reconstructed using the anti- k_t algorithm (R=0.4), pT > 30 GeV and $|\eta| < 4.5$
- Events must contain ≥ 2 tau candidates and no electrons or muons, with the leading tau $p_T > 150 \text{ GeV}$
- Taus are expected back-to-back with $\phi(\tau_1, \tau_2) > 2.7$.

Results

* No significant excess observed

** A lower limit on the mass of a Z'_{SSM} decaying to $\tau_{ba\partial} \tau_{ba\partial}$ in the Sequential Standard Model is 1.90 TeV at 95% CL.

The earlier result in the hadronic tau channel for this search placed limits at 1.4 TeV.

Summary

- * No hints of new physics yet for resonances decaying to third generation leptons and quarks
 - We are pushing the limits into the multi-TeV scale with the current data set
- * Latest results using the full luminosity from 2012 @ 8 TeV
- Run 2 will indeed be a very exciting period, with the increased beam energy and luminosity -> expect surprises

Back-up Slides

• Expected BDT output distributions for the background and several W'_L/W'_R -boson processes in the 3-jet signal region (ATLAS-CONF-2013-050)

•Data and expected BG events in the signal region. Event yields for several mass hypotheses of the R-handed W' boson shown. The uncertainties account for all systematic effects. (ATLAS-CONF-2013-050)

	2-jet 2-tag channel	3-jet 2-tag channel
W'_{P} (0.5 TeV)	11800 ± 2700	8200 ± 1800
W'_{R} (1.0 TeV)	600 ± 150	660 ± 160
W'_{R} (1.5 TeV)	42 ± 11	56 ± 13
W'_R (2.0 TeV)	4.2 ± 1.1	6.2 ± 1.5
W'_R (2.5 TeV)	0.69 ± 0.17	0.87 ± 0.20
$W_{R}^{'}$ (3.0 TeV)	0.22 ± 0.06	0.25 ± 0.06
tī	8300 ± 2100	22000 ± 5000
Single-top t-channel	1000 ± 270	1400 ± 400
Single-top Wt	400 ± 80	880 ± 170
Single-top s-channel	310 ± 90	160 ± 50
W+jets	3600 ± 1900	4000 ± 5000
Diboson	130 ± 60	80 ± 40
Z+jets	26 ± 20	42 ± 30
Multijets	710 ± 350	410 ± 210
Total bkg.	14400 ± 3100	29000 ± 7000
D (14120	07750

• Observed and expected 95% CL limits on the ratio g'/g, as a function of the mass of the W' boson, for L- and R-handed W' bosons (ATLAS-CONF-2013-050)

Data and expected background event yields after the resolved and boosted selections (ATLAS-CONF-2013-052)

Resolved selection						
Туре	e+jets	μ +jets	Sum			
tī	94000 ± 15000	118000 ± 19000	211000 ± 33000			
Single top	6800 ± 800	8400 ± 1100	15200 ± 1900			
Multi-jet	3700 ± 1800	10000 ± 5000	14000 ± 6000			
W+jets	16000 ± 4000	23000 ± 6000	39000 ± 10000			
Z+jets	1800 ± 400	1800 ± 400	3600 ± 800			
Di-bosons	230 ± 50	320 ± 60	550 ± 100			
Total	121000 ± 17000	162000 ± 23000	283000 ± 39000			
Data	119490	160878	280251			
	Boosted selection					
Туре	e+jets	μ +jets	Sum			
tī	2100 ± 500	2800 ± 600	4900 ± 1100			
Single top	71 ± 15	105 ± 22	176 ± 34			
Multi-jet	39 ± 19	32 ± 16	71 ± 25			
W+jets	170 ± 60	310 ± 90	480 ± 140			
Z+jets	18 ± 11	33 ± 8	52 ± 15			
Di-bosons	2.0 ± 0.8	1.5 ± 1.4	3.5 ± 1.8			
Total	2400 ± 500	3300 ± 700	5600 ± 1200			
Data	2177	2045	5122			

Event display for $m_{tt}^{reco} = 2.6$ TeV e+jets tt candidate event

Event display for $m_{tt}^{reco} = 2.5 \text{ TeV } \mu$ +jets tī candidate event

Systematic errors for the T_{had}T_{had} resonance search (ATLAS-CONF-2013-066)

	$Z/\gamma^*\to\tau\tau$	Multijet	W/Z+jets	Diboson	SM total	Z' _{SSM} (1750)
Expected Events	0.99 ± 0.02	0.17 ± 0.09	0.18 ± 0.03	0.02 ± 0.02	1.36 ± 0.10	5.58 ± 0.14
Theory Cross Section [%]	+9 -6	_	±28	±13	+7 -6	-
Luminosity [%]	±2.8	-	±2.8	±2.8	±2.5	±2.8
Tau trigger [%]	±10	-	< 1	-	±7	±10
Tau ID [%]	±13	-	±5	±5	±10	±13
Tau 3-prong [%]	±4	-	< 1	-	±3	±4
Jet-to-tau fake-rate [%]	< 1	-	±61	±60	±9	< 1
Tau energy scale [%]	±12	-	±5	-	±9	±2
Jet energy scale [%]	< 1	-	+1 -5	-	< 1	< 1
$E_{\rm T}^{\rm miss}$ [%]	< 1	-	-3 +0.2	-	< 1	< 1
Multijet fake-factor [%]	-	±58	-	-	±7	-