Vector-like bottom quarks in Composite Higgs models

Ramona Gröber in coll. with M. Gillioz, A. Kapuvari and M. Mühlleitner | 30.08.2013

Institute for Theoretical Physics

Outline

(1) Motivation
(2) Electroweak precision tests
(3) Higgs results

Introduction \& Motivation

- Additional strong sector \rightarrow Higgs as resonance
- Why is the Higgs boson lighter than the other resonances?
- Higgs mass: Generated at loop level by explicit breaking of G through interactions of SM states with strong sector \Rightarrow Higgs mass is related to masses of other resonances

SM fermion masses are generated through linear mixing with partners of strong sector, e.g.

Introduction \& Motivation

- Additional strong sector \rightarrow Higgs as resonance
- Why is the Higgs boson lighter than the other resonances?

Higgs is a PGB from a global symmetry G with

$$
G \xrightarrow{\text { at scale } f} H \supset S U(2)_{L} \times S U(2)_{R}
$$

Minimal models:

$$
S O(5) \times U(1)_{X} \rightarrow S O(4) \times U(1)_{X}
$$

[Agashe, Contino, Pomarol; Contino, Da Rold, Pomarol]

- Higgs mass: Generated at loop level by explicit breaking of G through interactions of SM states with strong sector \Rightarrow Higgs mass is related to masses of other resonances
- Partial compositeness:

SM fermion masses are generated through linear mixing with parthers of strong sector, e.g.:

$$
\Delta \mathcal{L}=\lambda_{L} \bar{q}_{L} Q_{L}+\lambda_{R} \bar{T}_{R} t_{R}
$$

Introduction \& Motivation

- Additional strong sector \rightarrow Higgs as resonance
- Why is the Higgs boson lighter than the other resonances?

Higgs is a PGB from a global symmetry G with

$$
G \xrightarrow{\text { at scale } f} H \supset S U(2)_{L} \times S U(2)_{R}
$$

Minimal models:

$$
S O(5) \times U(1)_{X} \rightarrow S O(4) \times U(1)_{X}
$$

[Agashe, Contino, Pomarol;
Contino, Da Rold, Pomarol]

- Higgs mass: Generated at loop level by explicit breaking of G through interactions of SM states with strong sector \Rightarrow Higgs mass is related to masses of other resonances

$$
\text { Light Higgs } \Leftrightarrow \text { Light fermionic resonances }
$$

[Matsedonskyi, Panico, Wulzer; Redi, Tesi; Marzocca, Serone, Shu; Pomarol, Riva]

SM fermion masses are generated through linear mixing with partners of strong sector, e.g.

Introduction \& Motivation

- Additional strong sector \rightarrow Higgs as resonance
- Why is the Higgs boson lighter than the other resonances?

Higgs is a PGB from a global symmetry G with

$$
G \xrightarrow{\text { at scale } f} H \supset S U(2)_{L} \times S U(2)_{R}
$$

Minimal models:

$$
S O(5) \times U(1)_{X} \rightarrow S O(4) \times U(1)_{X} \quad \begin{array}{ll}
\text { [Agashe, Contino, Pomarol; } \\
\text { Contino, Da Rold, Pomarol] }
\end{array}
$$

- Higgs mass: Generated at loop level by explicit breaking of G through interactions of SM states with strong sector \Rightarrow Higgs mass is related to masses of other resonances

Light Higgs \Leftrightarrow Light fermionic resonances
[Matsedonskyi, Panico, Wulzer; Redi, Tesi; Marzocca, Serone, Shu; Pomarol, Riva]

- Partial compositeness:

SM fermion masses are generated through linear mixing with partners of strong sector, e.g.:

$$
\Delta \mathcal{L}=\lambda_{L} \bar{q}_{L} Q_{L}+\lambda_{R} \bar{T}_{R} t_{R}
$$

Motivation- Top Partners

EWPT:

Models with new vector-like fermions in full representations (fundamental) of $S O(5)$ can be compatible with EWPT [Gillioz; Anastasiou, Furlan, Santiago; Lodone; ;..]

Higgs production:

Effects of top-partners can be described by low-energy theorem

$$
\begin{aligned}
\mathcal{L}_{h g g}= & \frac{g_{s}^{2}}{192 \pi^{2}} G^{\mu \nu} G_{\mu \nu} \frac{h}{v} \times \\
& \frac{\partial}{\partial \log H} \log \operatorname{det} \underbrace{\mathcal{M}_{t}^{2}}_{\text {top }}(H) \\
= & \frac{g_{s}^{2}}{192 \pi^{2}} G^{\mu \nu} G_{\mu \nu} \frac{h}{v} \frac{1-2 \xi}{\sqrt{1-\xi}}
\end{aligned}
$$

\Rightarrow Depends only on $\xi=v^{2} / f^{2}$! Not on details of spectrum! $[$ Falkowski; Low, Vichi; Azatov, Galloway; Gillioz, RG, Grojean, Mühlleitner, Salvioni]

What effects do bottom partners have on electroweak precision tests and Higgs results?

A "simple" model - New fermions

Antisymmetric representation ((10) under SO(5)):
Simplest single representation, which can give a mass to both top and bottom quark.
Decomposition under $S U(2)_{L} \times S U(2)_{R}$

$$
(10)=(3,1)+(1,3)+(2,2)
$$

- $(\mathbf{3}, \mathbf{1})=\left(\begin{array}{l}\chi \\ u \\ d\end{array}\right)$
- $(\mathbf{1 , 3})=\left(\begin{array}{lll}\chi_{1} & u_{1} & d_{1}\end{array}\right)$
d_{1} / u_{1} mixes with b_{R} / t_{R}
- $(\mathbf{2}, \mathbf{2})=\left(\begin{array}{cc}\chi_{4} & T_{4} \\ t_{4} & d_{4}\end{array}\right)$
$\left(T_{4}, d_{4}\right)$ mixes with $\left(t_{L}, b_{L}\right)$
χ_{i} has charge $5 / 3$
u, u_{1}, t_{4}, T_{4} have charge $2 / 3$
d, d_{1}, d_{4} has charge $-1 / 3$

A "simple" model - Lagrangian

Lagrangian:

$$
\begin{aligned}
\Delta \mathcal{L}_{\text {ferm }}= & i \operatorname{Tr}\left(\overline{\mathcal{Q}}_{R} \not \mathcal{Q}_{R}\right)+i \operatorname{Tr}\left(\overline{\mathcal{Q}}_{L} \not \mathcal{Q}_{L}\right)+i \bar{q}_{L} \not q_{L}+i \bar{b}_{R} \not D b_{R} \\
& +i \bar{t}_{R} \not t_{R}-M_{10} \operatorname{Tr}\left(\overline{\mathcal{Q}}_{R} \mathcal{Q}_{L}\right)-y f\left(\Sigma^{\dagger} \overline{\mathcal{Q}}_{R} \mathcal{Q}_{L} \Sigma\right) \\
& -\lambda_{t} \bar{t}_{R} u_{1 L}-\lambda_{b} \bar{b}_{R} d_{1 L}-\lambda_{q}\left(\bar{T}_{4 R}, \bar{d}_{4 R}\right) q_{L}+\text { h.c. }
\end{aligned}
$$

$\mathcal{Q}=$ ten-plet of new vector-like fermions
Goldstone field (in unitary gauge):

$$
\Sigma=(0,0,0, \sin (H / f), \cos (H / f))
$$

Parameters:
$\xi=v^{2} / f^{2}, y, M_{10}$ and $\sin \phi_{L}\left(\right.$ with $\left.\tan \phi_{L}=\lambda_{q} /\left(M_{10}+f y / 2\right)\right)$
$\lambda_{t} / \lambda_{b}$ fixed by requirement that an entry after diagonalization of the mass matrices is $m_{\text {top }} / m_{\text {bot }}$

Electroweak precision tests

LEP: Measurement of resonant production of Z boson with high precision
\rightarrow New physics models have to fulfill constraints

Parametrisation with $\epsilon_{1}, \epsilon_{2}, \epsilon_{3}$ and ϵ_{b} :
(or equivalently $S, T, U_{\text {[Peskin, Takeuchi] }}$ and $\delta g_{Z \rightarrow b_{L} \bar{b}_{L}}$)
[Altarelli, Barbieri,
Caravaglios, Jadach]

- ϵ_{1} (or $\left.T\right)$:

Divergent contribution due to modified Higgs couplings to vector bosons:

$$
\Delta \epsilon_{1}^{I R}=-\frac{3 \alpha\left(m_{Z}^{2}\right)}{16 \pi \sin ^{2} \theta_{W}} \xi \log \left(\frac{m_{\rho}^{2}}{m_{Z}^{2}}\right) .
$$

[Barbieri, Bellazzini, Rychkov, Varagnolo]

Cut-off by mass of first vector resonance m_{ρ}.
Contributions from new fermions in loop.

- ϵ_{3} (or S):

Divergent contribution due to modified Higgs couplings:

$$
\Delta \epsilon_{3}^{I R}=\frac{\alpha\left(m_{Z}^{2}\right)}{48 \pi \sin ^{2} \theta_{w}} \xi \log \left(\frac{m_{\rho}^{2}}{m_{z}^{2}}\right)
$$

[Lavoura, Silva;
Anastasiou, Furlan, Santiago; Agashe, Contino; Gillioz]
[Barbieri, Bellazzini, Rychkov, Varagnolo]

Mixing with vector resonance ρ or axial vector resonance a:

$$
\Delta \epsilon_{3}^{U V}=\frac{m_{W}^{2}}{m_{\rho}^{2}}\left(1+\frac{m_{\rho}^{2}}{m_{a}^{2}}\right)
$$

[Contino]

The constraint on ϵ_{b}

Previous works: No mixing of bottom quark [e.g: Anastasiou, Furlan, Santiago]

NEW: Full mixing of bottom quark with partners!
New counterterms for the renormalization necessary.

The constraint on ϵ_{b}

Bare Lagrangian

$$
\mathcal{L}_{Z \bar{b}_{L} b_{L}}=-\frac{e}{s_{W} C_{W}} \bar{b}_{L, i}^{0} \gamma_{\mu} U_{i j}^{0 L}\left(T_{3, L}-2 s_{W}^{2} Q\right)_{j j} U_{j k}^{0 L \dagger} b_{L, k}^{0} z^{\mu} .
$$

- Renormalization of bare field:

$$
b_{L, i}^{0} \rightarrow\left(\delta_{i j}+\frac{1}{2} \delta z_{i j}\right) b_{L, j}
$$

- Renormalization of mixing matrix:

$$
U_{i j}^{0} \rightarrow\left(\delta_{i k}+\delta u_{i k}\right) U_{k j}
$$

The counterterm is defined anti-hermitian to ensure unitarity [Denner, Sack; Yamada; Gambino,
Grassi, Madricardo; ...]

$$
\delta u_{b o t, i j}^{L}=\frac{1}{4}\left(\delta Z_{i j}^{L}-\delta Z_{i j}^{L \dagger}\right)
$$

Results on EWPTs

- $\delta g_{B S M}-\delta g_{S M}$ finite if mixing matrix renormalization included
- Our results can easily be applied to other models
- Scan over

$$
0 \leq \xi \leq 1, \quad 0<\sin \phi_{L} \leq 1, \quad|y|<4 \pi, \quad 0 \leq M_{10} \leq 10 \mathrm{TeV}
$$

$$
\chi^{2}=\sum_{i, j=1,2,3, b}\left(\epsilon_{i}^{\text {th }}-\epsilon_{i}^{e x p}\right) C_{i j}^{-1}\left(\epsilon_{j}^{\text {th }}-\epsilon_{j}^{e x p}\right) \quad \chi^{2}-\chi_{\text {min }}^{2}<13.28
$$

- Additional constraint: $\left|V_{t b}\right|>0.92$ [CMS collaboration]

- Bottom partner can contribute up to $\approx 55 \%$ to $\Delta \chi^{2}$
- Higgs contributions are small: $\lesssim 3 \%$

Higgs results

The gluon fusion cxn cannot be described by LET anymore, because $m_{b} \ll m_{h}$:

$$
\mathcal{L}_{h g g}=\frac{g_{s}^{2}}{192 \pi^{2}} G^{\mu \nu} G_{\mu \nu} \frac{h}{v}\left(\frac{\partial}{\partial \log H} \log \operatorname{det} \mathcal{M}^{2}(H)-\sum_{m_{i}<m_{h}} \frac{y_{i i}}{M_{i}}\right)
$$

\rightsquigarrow dependence on spectrum [Azatov, Galloway]
Procedure:

- Heavy quark loops for $g g \rightarrow h$ implemented in HIGLU (at NLO QCD)
- Total production cross section
- Higgs decays including loops of vector-like fermions implemented in HDECAY [Spira]

Higgs results

The gluon fusion cxn cannot be described by LET anymore, because $m_{b} \ll m_{h}$:

$$
\mathcal{L}_{h g g}=\frac{g_{s}^{2}}{192 \pi^{2}} G^{\mu \nu} G_{\mu \nu} \frac{h}{v}\left(\frac{\partial}{\partial \log H} \log \operatorname{det} \mathcal{M}^{2}(H)-\sum_{m_{i}<m_{h}} \frac{y_{i i}}{M_{i}}\right)
$$

\rightsquigarrow dependence on spectrum [Azatov, Galloway]

Procedure:

- Heavy quark loops for $g g \rightarrow h$ implemented in HIGLU (at NLO QCD) [Spira]
- Total production cross section

$$
\sigma_{\text {prod }}=\sigma_{g g \rightarrow H}+\sigma_{H q \bar{q}}^{S M}(1-\xi)+\sigma_{W H / Z H}^{S M}(1-\xi)+\sigma_{t \bar{t} H}^{S M}\left(g_{h t \bar{t}} / g_{h t \bar{t}}^{S M}\right)^{2}
$$

- Higgs decays including loops of vector-like fermions implemented in HDECAY [Spira]

Higgs results

- Scan over parameter space
$0 \leq \xi \leq 1$,
$0<\sin \phi_{L} \leq 1$,
$|y|<4 \pi$,
$0 \leq M_{10} \leq 10 \mathrm{TeV}$.
- Point rejected if excluded by direct searches for new fermions analogously to: [Gillioz, RG,

Grojean, Mühlleitner, Salvioni]

- Global χ^{2} :

$$
\chi^{2}=\sum_{i} \frac{\left(\mu_{i}^{e x p}-\mu_{i}^{\text {theo }}\right)^{2}}{\left(\Delta \mu_{i}^{\text {exp }}\right)^{2}+\left(\Delta \mu_{i}^{\text {theo }}\right)^{2}}+\chi_{E W P T}^{2}+\frac{\left(\left|V_{t b}^{\text {exp }}\right|-\left|V_{t b}^{\text {theo }}\right|\right)^{2}}{\left(\Delta V_{t b}\right)^{2}}
$$

and

$$
\mu_{i}=\frac{\sigma_{\text {prod }} B R(h \rightarrow i i)}{\sigma_{\text {prod }}^{S M} B R^{S M}(h \rightarrow i i)}
$$

Higgs Results: ATLAS - Moriond 2013

Higgs Results: CMS - Moriond 2013

Conclusion

- We investigated the effects of new vector-like fermionic bottom partners in the framework of partial compositeness
- Mixing of bottom quark makes mixing matrix renormalization for EWPTs necessary
- Bottom partners can directly influence EWPTs through loop contributions
- Bottom partners lead to a dependence of Higgs cross sections on spectrum
- Simple model can pass EWPTs, direct searches of new fermions, constraint on $V_{t b}$ and current Higgs results

Thanks for your attention!

Mass matrices

$$
\begin{aligned}
-\mathcal{L}_{m_{t}} & =\left(\begin{array}{c}
t_{L} \\
u_{L} \\
u_{1 L} \\
t_{4 L} \\
T_{4 L}
\end{array}\right)\left(\begin{array}{ccccc}
0 & 0 & 0 & 0 & \lambda_{q} \\
0 & \tilde{m}_{a} & -\frac{1}{4} f y s_{H}^{2} & -\frac{1}{4} f y c_{H} s_{H} & -\frac{1}{4} f y c_{H} s_{H} \\
\lambda_{t} & -\frac{1}{4} f y s_{H}^{2} & \tilde{m}_{a} & \frac{1}{4} f y c_{H} s_{H} & \frac{1}{4} f y c_{H} s_{H} \\
0 & -\frac{1}{4} f y c_{H} s_{H} & \frac{1}{4} f y c_{H} s_{H} & \tilde{m}_{b} & -\frac{1}{4} f y s_{H}^{2} \\
0 & -\frac{1}{4} f y c_{H} s_{H} & \frac{1}{4} f y c_{H} s_{H} & -\frac{1}{4} f y s_{H}^{2} & \tilde{m}_{b}
\end{array}\right)\left(\begin{array}{c}
t_{R} \\
u_{R} \\
u_{1 R} \\
t_{4 R} \\
T_{4 R}
\end{array}\right)+\text { h.c. } \\
& -\mathcal{L}_{m_{b}}=\left(\begin{array}{c}
b_{L} \\
d_{L} \\
d_{1 L} \\
d_{4 L}
\end{array}\right)\left(\begin{array}{cccc}
0 & 0 & 0 & \lambda_{q} \\
0 & \tilde{m}_{a} & -\frac{1}{4} f y s_{H}^{2} & f y \frac{c_{H} s_{H}}{2 \sqrt{2}} \\
\lambda_{b} & -\frac{1}{4} f y s_{H}^{2} & \tilde{m}_{a} & -f y \frac{c_{H} s_{H}}{2 \sqrt{2}} \\
0 & f y \frac{c_{H} s_{H}}{2 \sqrt{2}} & -f y \frac{c_{H} s_{H}}{2 \sqrt{2}} & \tilde{m}_{c}
\end{array}\right)\left(\begin{array}{c}
b_{R} \\
d_{R} \\
d_{1 R} \\
d_{4 R}
\end{array}\right)+\text { h.c. }
\end{aligned}
$$

with

$$
\tilde{m}_{a}=\frac{1}{4} f y s_{H}^{2}+M_{10}, \quad \quad \tilde{m}_{b}=\frac{1}{2} f y\left(1-\frac{1}{2} s_{H}^{2}\right)+M_{10} \quad \text { and } \quad \tilde{m}_{c}=\frac{1}{2} f y c_{H}^{2}+M_{10}
$$

Approximative formulae for masses

Rotation for $v=0$:

$$
\begin{aligned}
\binom{q_{L}}{Q_{L}} \rightarrow\left(\begin{array}{cc}
\cos \phi_{L} & \sin \phi_{L} \\
-\sin \phi_{L} & \cos \phi_{L}
\end{array}\right)\binom{q_{L}}{Q_{L}} & \tan \phi_{L}=\lambda_{q} /\left(M_{10}+f y / 2\right), \\
\binom{t_{R}}{u_{1 R}} \rightarrow\left(\begin{array}{cc}
\cos \phi_{R t} & \sin \phi_{R t} \\
-\sin \phi_{R t} & \cos \phi_{R t}
\end{array}\right)\binom{c_{R}}{u_{1 R}} & \tan \phi_{R t}=\lambda_{t} / M_{10}, \\
\binom{b_{R}}{d_{1 R}} \rightarrow\left(\begin{array}{cc}
\cos \phi_{R b} & \sin \phi_{R b} \\
-\sin \phi_{R b} & \cos \phi_{R b}
\end{array}\right)\binom{b_{R}}{d_{1 R}} & \tan \phi_{R b}=\lambda_{b} / M_{10},
\end{aligned}
$$

with $Q_{L}=\left(T_{4 L}, d_{4 L}\right)$.
Masses of the new fermions:
$\underbrace{M_{10}, \frac{M_{10}}{\cos \phi_{R, t}}, M_{10}+\frac{f y}{2}, \frac{M_{10}+\frac{f y}{2}}{\cos \phi_{L}}}_{\text {tops }}, \underbrace{M_{10}, \frac{M_{10}}{\cos \phi_{R, b}}, \frac{M_{10}+\frac{f y}{2}}{\cos \phi_{L}}}_{\text {bottoms }}, \underbrace{M_{10}, M_{10}, M_{10}+\frac{f y}{2}}_{\chi^{\prime} s}$.
At LO in v / f top and bottom quark are mass

$$
m_{t o p}=\frac{y v}{4} \sin \phi_{L} \sin \phi_{R t}, \quad m_{b o t}=\frac{y v}{2 \sqrt{2}} \sin \phi_{L} \sin \phi_{R b} .
$$

More results on EWPT

Experimental Higgs Results

Comparison with SM

Light Higgs - Light Resonance

For a light Higgs boson light top partners are needed.
Approximative formula:

$$
m_{Q} \leq \frac{m_{h} \pi v}{m_{t} \sqrt{N_{c}} \sqrt{\xi}}
$$

Best fit points

Experiment	ξ	χ^{2}				
ATLAS	0.096	8.83				
CMS	0.073	4.55	\rightarrow	Experiment	ξ	χ^{2}
:---:	:---:	:---:	:---:			
ATLAS	0.067	10.07				
CMS	0.066	5.30				

