

Searches for supersymmetry in resonance production and R-parity violating signatures with the ATLAS detector.

Nick Barlow

University of Cambridge

Contents

- Introduction to R-Parity violating SUSY.
- Multi-jet resonance searches.
 - Resolved jets (ATLAS-CONF-2013-091).
 - Boosted jets (JHEP 1212 (2012) 086).
- Multi-lepton search (*ATLAS-CONF-2013-036*).
- e/mu/tau resonance search (*Phys.Lett. B723 (2013) 15-32*).

- R-Parity is defined as $P_R = (-1)^{3(B-L)+2S}$.
 - B, L, S are Baryon number, Lepton number, and Spin respectively.
 - All SM particles have $P_R = 1$, all SUSY particles have $P_R = -1$.
- Many SUSY models assume R-Parity conservation.
 - Stable LSP is a good dark matter candidate!
- BUT no reason to assert this a priori.
- Can introduce R-Parity Violating terms into superpotential:

 $\lambda_{ijk}L^{i}L^{j}\overline{E}^{k} + \lambda_{ijk}^{\prime}L^{i}Q^{j}\overline{D}^{k} + \lambda_{ijk}^{\prime\prime}\overline{U}^{i}\overline{D}^{j}\overline{D}^{k} + \epsilon_{i}L_{i}H_{2}$

- R-Parity is defined as $P_R = (-1)^{3(B-L)+2S}$.
 - B, L, S are Baryon number, Lepton number, and Spin respectively.
 - All SM particles have $P_R = 1$, all SUSY particles have $P_R = -1$.
- Many SUSY models assume R-Parity conservation.
 - Stable LSP is a good dark matter candidate!
- BUT no reason to assert this a priori.
- Can introduce R-Parity Violating terms into superpotential:

 $\lambda_{ijk}L^{i}L^{j}\overline{E}^{k} + \lambda_{ijk}^{\prime}L^{i}Q^{j}\overline{D}^{k} + \lambda_{ijk}^{\prime\prime}\overline{U}^{i}\overline{D}^{j}\overline{D}^{k} + \epsilon_{i}L_{i}H_{2}$

- R-Parity is defined as $P_R = (-1)^{3(B-L)+2S}$.
 - B, L, S are Baryon number, Lepton number, and Spin respectively.
 - All SM particles have $P_R = 1$, all SUSY particles have $P_R = -1$.
- Many SUSY models assume R-Parity conservation.
 - Stable LSP is a good dark matter candidate!
- BUT no reason to assert this a priori.
- Can introduce R-Parity Violating terms into superpotential:

$$\lambda_{ijk}L^{i}L^{j}\overline{E}^{k} + \lambda'_{ijk}L^{i}Q^{j}\overline{D}^{k} + \lambda''_{ijk}\overline{U}^{i}\overline{D}^{j}\overline{D}^{k} + \epsilon_{i}L_{i}H_{2}$$

Baryon number violating

- R-Parity is defined as $P_R = (-1)^{3(B-L)+2S}$.
 - B, L, S are Baryon number, Lepton number, and Spin respectively.
 - All SM particles have $P_R = 1$, all SUSY particles have $P_R = -1$.
- Many SUSY models assume R-Parity conservation.
 - Stable LSP is a good dark matter candidate!
- BUT no reason to assert this a priori.
- Can introduce R-Parity Violating terms into superpotential:

 $\lambda_{ijk}L^{i}L^{j}\overline{E}^{k} + \lambda_{ijk}^{\prime}L^{i}Q^{j}\overline{D}^{k} + \lambda_{ijk}^{\prime\prime}\overline{U}^{i}\overline{D}^{j}\overline{D}^{k} + \epsilon_{i}L_{i}H_{2}$

i,j,k are generation indices

Constraints on RPV couplings

- Non-observation of proton decay effectively excludes processes that violate both lepton and baryon number.
 - Many RPV models assume "single coupling dominance", i.e. turn-on one coupling, leave the others as zero.
- CKM unitarity, τ decays, limits on neutrino masses, give upper limits on λ couplings
 - (arXiv:0910.4980, arXiv:1005.3309).
- Stringent limits on λ''_{11k} from neutron oscillation.
- But, only relatively weak constraints on third-generation $\lambda^{''}$ couplings!
- Note that non-zero but small values of couplings would lead to long-lived signatures, e.g. displaced vertices.
 - Lifetime is proportional to $1/(coupling)^2$.
 - See talk by Nimrod Taiblum for an example of ATLAS search for displaced vertices arising from small λ' coupling.

- If RPV couplings are small, R-Parity Conserving pair-production of sparticles will dominate, RPV couplings give rise to decay of LSP.
- Non-zero $\lambda^{\prime\prime}$ coupling can give rise to final states with high jet multiplicity.

- If RPV couplings are small, R-Parity Conserving pair-production of sparticles will dominate, RPV couplings give rise to decay of LSP.
- Non-zero $\lambda^{\prime\prime}$ coupling can give rise to final states with high jet multiplicity.

- If RPV couplings are small, R-Parity Conserving pair-production of sparticles will dominate, RPV couplings give rise to decay of LSP.
- Non-zero $\lambda^{\prime\prime}$ coupling can give rise to final states with high jet multiplicity.

- If RPV couplings are small, R-Parity Conserving pair-production of sparticles will dominate, RPV couplings give rise to decay of LSP.
- Non-zero $\lambda^{\prime\prime}$ coupling can give rise to final states with high jet multiplicity.

- Huge number of possible jet combinations (even just in signal events) precludes measurement of a resonance "peak".
- Instead, look for an excess of events with large number of high-pT jets. 11

Multi-jet search: selection and background

- Previous analysis on 2011 data (arXiv:1210.4813)
- New feature use b-tagging info to estimate branching ratios of RPV decays to different flavours.
 - Each RPV decay going via λ''_{ijk} will give rise to one up-type quark, and two down-type quarks of different flavours.
 - $BR(t) + BR(c) \le 1$, and at most one b-quark per event.
- Optimize signal regions for different BR hypotheses and different gluino masses, for 6-quark and 10-quark models, by varying N(jet)≥6 or N(jet)≥7, minimum jet p_T cut, and number of *b*-tagged jets.
- Dominant source of background is from multi-jet events.
 - Estimate by projecting from lower-jet-multiplicity bins.

$$N_{n-jet}^{data} = \left(N_{m-jet}^{data} - N_{m-jet, OtherBGs}^{MC}\right) \times \left(\frac{N_{n-jet}^{MC}}{N_{m-jet}^{MC}}\right) + N_{n-jet, OtherBGs}^{MC}$$

Multi-jet search: selection and background

- Previous analysis on 2011 data (arXiv:1210.4813)
- New feature use b-tagging info to estimate branching ratios of RPV decays to different flavours.
 - Each RPV decay going via λ''_{ijk} will give rise to one up-type quark, and two down-type quarks of different flavours.
 - $BR(t) + BR(c) \le 1$, and at most one b-quark per event.
- Optimize signal regions for different BR hypotheses and different gluino masses, for 6-quark and 10-quark models, by varying N(jet)≥6 or N(jet)≥7, minimum jet p_T cut, and number of *b*-tagged jets.

ttbar.

Single top

W+jets

- Dominant source of background is from multi-jet events.
 - Estimate by projecting from lower-jet-multiplicity bins.

$$N_{n-jet}^{data} = \left(N_{m-jet}^{data} - N_{m-jet, OtherBGs}^{MC}\right) \times \left(\frac{N_{n-jet}^{MC}}{N_{m-jet}^{MC}}\right) + N_{n-jet, OtherBGs}^{MC}$$

Multi-jet search: selection and background

- Previous analysis on 2011 data (arXiv:1210.4813)
 New feature use *b*-tagging info to estimate branching ratios of RPV decays to different flavours.
 Each RPV decay going via λ", will give rise to one up-type quark, and two
 - Each RPV decay going via λ''_{ijk} will give rise to one up-type quark, and two down-type quarks of different flavours.
 - $BR(t) + BR(c) \le 1$, and at most one b-quark per event.
- Optimize signal regions for different BR hypotheses and different gluino masses, for 6-quark and 10-quark models, by varying N(jet)≥6 or N(jet)≥7, minimum jet p_T cut, and number of *b*-tagged jets.
- Dominant source of background is from multi-jet events.
 - Estimate by projecting from lower-jet-multiplicity bins.

$$\frac{data}{n-jet} = \left(N_{m-jet}^{data} - N_{m-jet, OtherBGs}^{MC} \right) \times \left(\frac{N_{n-jet}^{MC}}{N_{m-jet}^{MC}} \right) + N_{n-jet, OtherBGs}^{MC}$$

factor

derived

from MC

Multijet search – validation of background method

- Projection method is "calibrated" using the data.
- Baseline projection is from (N-2)-jets to N-jets, with same p_T cut and number of b-tags.
 - Also validate with projection from (N-1) jets.
 - For large N, look at low p_T or large η to avoid signal contamination.

Use worst-case discrepancies from all projections to derive systematic uncertainties.

Multi-jet search: results

Set 95% CL upper limits on cross-section, for 6- and 10quark models, and different assumed branching ratios.

→ 10q) [pb]

10⁴

 10^{3}

දුහි 10²

dd)β

1

10 10-2

10⁻³

400

Obs 95% CL Limit Exp Limit

gg Cross-Section (NLO+NLL)

L dt ~ 20.3 fb⁻¹, s = 8 TeV

600 800 1000 1200 1400

m_ã [GeV]

BR(t)=0%, BR(b)=0%, BR(c)=0%, m__ = 50 GeV

to Exp Limit

2 σ Exp Limit

ATLAS Preliminary

ਕੂ ¹⁰ [q] ^{10⁴} Obs 95% CL Limit Obs 95% CL Limit Exp Limit ල 10³ ······ Exp Limit ੰ<mark>ਲ</mark> 10³ ±1σ Exp Limit ±1σ Exp Limit ±2 σ Exp Limit ±2 σ Exp Limit ↑ gg Cross-Section (NLO+NLL) Set 95% CL upper limits on [−] <u>β</u> 10² dd) 0 200 10² BR(t)=0%, BR(b)=0%, BR(c)=0% BR(t)=0%, BR(b)=100%, BR(c)=0% dd)α L dt ~ 20.3 fb⁻¹,/s = 8 TeV L dt ~ 20.3 fb ¹,\s = 8 TeV cross-section, for 6- and 10quark models, and different 10⁻¹ 10 10^{-2} assumed branching ratios. 10^{-2} ATLAS Preliminary ATLAS Preliminary 10^{-3} 600 800 1000 1200 10^{-3} 600 800 1000 1200 m_a [GeV] m_ã [GeV] 10-quark model 6-quark model → 10q) [pb] Obs 95% CL Limit Exp Limit 10q) [pb] Obs 95% CL Limit Exp Limit No heavy flavour BR 10⁴ 1σ Exp Limit ±1σ Exp Limit 2 σ Exp Limit NP LIMIT 10^{3} ãã Cross-Section (NLO+NLL) gg Cross-Section (NLO+NLL) BR(t)=0%, BR(b)=0%, BR(c)=0%, m__ = 50 GeV BR(t)=0%, BR(b)=0%, BR(c)=0%, m__, = 600 GeV දුහි 10² ũũ Every gluino decay contains לdd) 10⁻¹ dd)ຍ L dt ~ 20.3 fb⁻¹, (s = 8 TeV L dt ~ 20.3 fb⁻¹, s = 8 TeV b-quark 1 10^{-2} 10 10-2 ATLAS Preliminary 10⁻³ **ATLAS** Preliminary 10⁻³ 400 600 800 1000 1200 1400 19 1000 1100 1200 1300 1400 m_a [GeV] m_a [GeV]

ਕੂ ¹⁰ [q] ^{10⁴} Obs 95% CL Limit Obs 95% CL Limit Exp Limit ල 10³ ······ Exp Limit ੰ<mark>ਲ</mark> 10³ ±1σ Exp Limit ±1σ Exp Limit ±2 σ Exp Limit ±2 σ Exp Limit gg Cross-Section (NLO+NLL) Set 95% CL upper limits on [−] <u>β</u> 10² dd) 0 200 10² BR(t)=0%, BR(b)=0%, BR(c)=0% BR(t)=0%, BR(b)=100%, BR(c)=0% 10 α(b L dt ~ 20.3 fb⁻¹,/s = 8 TeV L dt ~ 20.3 fb⁻¹,\s = 8 TeV cross-section, for 6- and 10quark models, and different 10⁻¹ 10 10^{-2} assumed branching ratios. 10^{-2} ATLAS Preliminary ATLAS Preliminary 10^{-3} 600 800 1000 1200 10⁻³ 600 800 1000 1200 m_a [GeV] m_ã [GeV] 10-quark model 6-quark model → 10q) [pb] Obs 95% CL Limit 10q) [pb] Obs 95% CL Limit Exp Limit No heavy flavour BR 10⁴ 1σ Exp Limit ±1σ Exp Limit 2 σ Exp Limit NP LIMIT 10^{3} ãã Cross-Section (NLO+NLL) I gg Cross-Section (NLO+NLL) BR(t)=0%, BR(b)=0%, BR(c)=0%, m__ = 50 GeV BR(t)=0%, BR(b)=0%, BR(c)=0%, m___ = 600 GeV ද්හි 10² ĩõ Every gluino decay contains dd)α 10⁻¹ dd)ຍ L dt ~ 20.3 fb⁻¹, (s = 8 TeV L dt ~ 20.3 fb⁻¹, s = 8 TeV b-quark 1 10⁻² 10 10-2 ATLAS Preliminary 10⁻³ ATLAS Preliminary Different neutralino masses 10⁻³ 400 600 800 1000 1200 1400 1000 1100 1200 1300 1400 m_a [GeV] m_a [GeV]

Multi-jet search: branching fractions

Plot excluded gluino masses as a function of Branching Ratios into heavy flavour:

Boosted multijet search

- Combinatorics problem is avoided if gluinos are highly boosted.
 - Decay products are all combined in one "fat" jet.
 - Use "N-subjettiness" substructure variables as discriminant:

 $\tau_N = \frac{1}{d_0} \sum_k p_{\mathrm{T}k} \times \min(\delta R_{1k}, \delta R_{2k}, \dots, \delta R_{Nk}) , \text{ with } d_0 \equiv \sum_k p_{\mathrm{T}k} \times R$

where N is number of subjets, R is jet radius parameter in jet algorithm, and δR_{ik} is the distance between subjet *i* and constituent *k*.

- Small value of $\tau_{32} = \tau_3 / \tau_2$ means jet is better described by three subjets than two.
 - Require $\tau_{32} < 0.7$.
- Also use number N_{jet}^{R4} of small-radius (R=0.4) jets in the event, and jet mass m^{jet} of large-R jet.
- Use "ABCD" method to estimate backgrounds.

Region	Jet (J_1) selections	Jet (J_2) selections	Description
CP 4	miet < M	miet < M	Low-mass jets,
Un-A	m ² < m _{threshold}	m ² < ^m threshold	to validate τ_{32} shape
CP P	$m^{\rm jet} > M_{\rm threshold}$	miet < M	Signal-like leading jet,
UR-D	$\tau_{32} < 0.7$ $m^* < m_{\text{threshold}}$	to validate m^{jet}	
CP C	$m^{\rm jet} < M_{\rm threshold}$	$m^{\rm jet} > M_{\rm threshold}$	Signal-like subleading
On-O		$\tau_{32} < 0.7$	jet, to validate m^{jet}

$$N_{SR} = N_{\text{CR}-C} \times \left(\frac{N_{\text{CR}-B}}{N_{\text{CR}-A}}\right) \times \alpha$$

Correlation factor α derived from MC.

Boosted multi-jet search

Using 2011	Model (m _{gluino})	$M_{threshold}$	Expected signal	Expected bkg	Data
dataset	100 GeV	60 GeV	77900 ± 16000	42400 ± 9700	40683
(4.6 fb ⁻¹)	200 GeV	140 GeV	2400 ± 670	860 ± 460	1059
	300 GeV	140 GeV	590 ± 55	860 ± 460	1059

Effectively looking for a peak in jet mass spectrum.

No significant excess observed. Set 95% CL upper limits on crosssection as function of gluino mass.

Multi-lepton analysis - motivation

- Again, assume RPV couplings are sufficiently small that they are only important for LSP decay.
 But sufficiently large that LSP decay is prompt!
- Non-zero λ couplings lead to final states with high lepton multiplicity.

– Neutrinos can also give substantial missing $E_{\rm T}$

Multi-lepton search: selection

- Look for events containing at least 4 charged leptons, of which at least 3 are "light" (i.e. electrons or muons).
 - Identify hadronically decaying taus using BDT.
 - Combination of single/double electron and muon triggers is 90-100% efficient.
 - Veto events with SFOS lepton pair with mass < 12 GeV, or close to the Z-boson mass.
- 2 signal regions optimized for RPV search:

<u>SR0noZb</u>

At least 4 light leptons, no requirement on number of taus. MET > 75 GeV OR m_{eff} > 600 GeV

<u>SR1noZ</u>

Exactly3 light leptons, at least 1 tau. MET > 100 GeV OR m_{eff} > 400 GeV

(m_{eff} is scalar sum of MET, lepton, and jet p_T)

Multi-lepton search: background

Irreducible background:

- contains four real leptons. e.g. ZZ, ZWW, ZZZ, tt+Z, tt+WW, tt+Higgs, Z +Higgs,W +Higgs (gauge bosons can be off-shell).
- Estimate using MC, applying corrections to accoung for data/ MC differences.
- Validate in regions with different kinematic requirements such that these contributions are enhanced.

Reducible background:

- contains one or more "fake" leptons (either from semileptonic b or c decay, photon conversions, or jets misidentified as leptons).
- e.g. WZ, tt, tt+W, WW, single top.
- Estimate using semi-datadriven "weighting method":

Multi-lepton search: Results

Signal Region	Irreducible Bkg	Reducible Bkg	Data	p-value	σ _{vis} (exp) [fb]	σ _{vis} (obs) [fb]
SR0noZb	1.6 ± 0.6	0.05 ^{+0.14} -0.05	1	0.5	0.17	0.18
SR1noZ	0.62 ± 0.21	1.4 ± 1.3	4	0.15	0.26	0.36

Multi-lepton search: interpretation

Multi-lepton search: interpretation

Multi-lepton search: interpretation

e/mu/tau resonance search

- Look for lepton-flavour-violating decays that take place via λ coupling.
 - e.g. decay of a tau-sneutrino to different-flavour leptons $\tilde{v}_{\tau} \rightarrow e^{\pm}\mu^{\mp}, e^{\pm}\tau^{\mp}, \mu^{\pm}\tau^{\mp}$
 - sneutrino can be produced via dd annihilation with the λ'_{311} coupling, and then decay to lepton pair via λ_{i3k} coupling.

e/mu/tau resonance search: selection and backgrounds.

- Use single electron trigger for eµ and eτ searches
- Single muon trigger for μτ searches.
- Electron or muon candidates must be isolated, and have $p_T > 25$ GeV.
- tau candidates must have $p_T > 20$ GeV.
- BDT discriminator used for tau ID.
- 2 leptons required to have different flavour, opposite charge, and be backto-back in aximuthal angle, $\Delta \phi > 2.7$.

- "Direct lepton backgrounds", e.g. ttbar, Z, WW, ZZ, WZ, Wt, estimated using MC.
- Semi-data-driven methods used to estimate "jet backgrounds", where one or both lepton candidates is a misidentified jet.
 - Mainly W+jets, multi-jet.

Use m(II)<200 GeV as a control region for background estimation, m(II)>200 GeV as signal region.

e/mu/tau resonance search: results

e/mu/tau resonance search: cross-section limits

Using 2011 dataset (4.6 fb⁻¹)

Set 95% CL upper limits on cross-section*BR.

e/mu/tau resonance search: coupling limits

Using 2011 dataset (4.6 fb⁻¹)

Set limits on coupling strength vs sneutrino mass.

Conclusions and outlook

- Many interesting searches, covering wide variety of signatures.
- Increasingly, many ATLAS SUSY searches have both RPC and RPV interpretations, e.g.
 - Same-sign dilepton search (ATLAS-CONF-2013-007)
 - 7-10 jets plus missing E_T (arXiv:1308.1841)
 - Gluino masses < 900 GeV excluded for stop masses from 400-1000 TeV

See talk by Marcello Barisonzi!

- No sign of new physics yet..
 - But, several results still to be updated to full 2012 dataset updates coming soon!

Backup

The ATLAS detector

- One of the two large General Purpose Detectors at the LHC
- Inner Detector for measuring charged particle tracks
- EM and hadronic calorimetry, with hermetic coverage.
- Muon chambers can measure even very high-pT muons via curvature in toroidal B-field.

e/mu/tau resonance search

	$m_{\ell\ell'} < 200 { m ~GeV}$		V	$m_{\ell\ell'} > 200 { m ~GeV}$		leV
Process	$N_{e\mu}$	$N_{e au_{ m had}}$	$N_{\mu au_{ m had}}$	$N_{e\mu}$	$N_{e au_{ m had}}$	$N_{\mu au_{ m had}}$
$Z/\gamma^* \to \tau\tau$	1880 ± 150	4300 ± 600	5300 ± 600	8 ± 1	24 ± 3	28 ± 4
$Z/\gamma^* \rightarrow ee$		1050 ± 80			44 ± 3	
$Z/\gamma^* ightarrow \mu\mu$			3030 ± 290			29 ± 3
$tar{t}$	760 ± 110	96 ± 18	94 ± 14	251 ± 30	90 ± 15	70 ± 13
Diboson	260 ± 27	57 ± 8	60 ± 7	71 ± 8	26 ± 3	24 ± 3
Single top quark	87 ± 8	11 ± 2	9 ± 1	39 ± 4	10 ± 2	8 ± 1
W+jets	420 ± 260	3500 ± 700	3200 ± 600	90 ± 40	370 ± 80	470 ± 110
multijet	37 ± 13	2200 ± 700	730 ± 230	6 ± 2	150 ± 50	24 ± 18
Total						
background	3440 ± 300	11200 ± 900	12400 ± 800	460 ± 60	720 ± 80	650 ± 90
Data	3345	11212	12285	498	795	699

Multi-lepton analysis

Sample SR0noZa		SR0noZb	SR1noZ		SR0Z	SR1Z
ZZ	0.6 ± 0.5	0.50 ± 0.26	0.19 ± 0.05		1.2 ± 0.4	0.49 ± 0.10
ZWW	0.12 ± 0.12	0.08 ± 0.08	0.05 ± 0.05		0.6 ± 0.6	0.13 ± 0.13
ttZ	0.73 ± 0.34	0.75 ± 0.35	0.16 ± 0.12		2.3 ± 0.9	0.29 ± 0.24
Higgs	0.26 ± 0.07	0.22 ± 0.07	0.23 ± 0.06	0.	58 ± 0.15	0.14 ± 0.05
Irreducible Bkg.	1.7 ± 0.8	1.6 ± 0.6	0.62 ± 0.21		4.8 ± 1.8	1.1 ± 0.4
Reducible Bkg.	$0^{+0.16}_{-0}$	$0.05^{+0.14}_{-0.05}$	1.4 ± 1.3		$0^{+0.14}_{-0}$	$0.3^{+1.0}_{-0.3}$
Total Bkg.	1.7 ± 0.8	1.6 ± 0.6	2.0 ± 1.3		4.8 ± 1.8	$1.3^{+1.0}_{-0.5}$
Data	2	1	4		8	3
p_0 -value	0.29	0.5	0.15		0.08	0.13
N _{signal} Excluded (exp)	3.9	3.6	5.3		6.7	4.5
N _{signal} Excluded (obs)	4.7	3.7	7.5		10.4	6.5
$\sigma_{\mathrm{visible}}$ Excluded (exp) [fb]	0.19	0.17	0.26		0.32	0.22
$\sigma_{\mathrm{visible}}$ Excluded (obs) [fb]	0.23	0.18	0.36		0.50	0.31

ATLAS 2011 and 2012 data

2011

7 TeV centre-of-mass energy 4.6fb⁻¹ with all good data quality. Average num. interactions/BC about 10.

2012

8 TeV centre-of-mass energy 20.3fb⁻¹ with all good data quality. Average num. interactions/BC about 20.

Sgluon search: results

Using 2011 dataset (4.6 fb⁻¹)

- No excess above background expectation.
- Set 95% CL upper limit on sgluon production cross-section multplied by Branching Ratio of decay to jets, as a function of sgluon mass.

Scalar gluon (sgluon) search

- Scalar partners of Dirac gluino occur in several extended SUSY models, e.g.
 - $\mathcal{N}=1/\mathcal{N}=2$ hybrid model (arXiv:0812.3586),
 - R-symmetric MSSM (arXiv:0712.2039).
- Such particles could be pair-produced, and each decay to a pair of gluons, leading to a 4-jet final state.
- Select events using multijet trigger.
- Require 4 jets with $|\eta| < 1.4$, separated by $\Delta R > 0.6$.
- Require 4^{th} jet $p_T > \max(80 \text{ GeV}, m_{\text{sgluon}} * 0.3 + 30 \text{ GeV})$
- Pair jets by minimising $|\Delta R_{pair1} 1| + |\Delta R_{pair2} 1|$.
- Define m_1 and m_2 as invariant masses of two pairs.
- Define cos(θ*) as cosine of angle between candidate flight direction and momentum.

Use "ABCD"		
method to		
estimate		
background		

Region	$ \cos(\theta^*) $	$ m_1 - m_2 /(m_1 + m_2)$
Α	< 0.5	< 0.15
в	> 0.5	< 0.15
С	< 0.5	> 0.15
D	> 0.5	> 0.15

Multi-lepton search: background

Irreducible background:

- contains four real leptons. e.g. ZZ, ZWW, ZZZ, tt+Z, tt+WW, tt+Higgs, Z+Higgs,W +Higgs (gauge bosons can be off-shell).
- Estimate using MC, applying corrections to accoung for data/MC differences.
- Validate in regions with different kinematic requirements such that these contributions are enhanced.

Reducible background:

- contains one or more "fake" leptons (either from semileptonic b or c decay, photon conversions, or jets misidentified as leptons).
- e.g. WZ, tt, tt+W, WW, single top.
- Estimate using semi-data-driven "weighting method":

Define I_s and I_L as leptons passing all signal criteria, or loosened criteria, respectively. Reducible bkg estimate is

 $[N_{data}(3I_{s}+I_{L})-N_{MC,irr}(3I_{s}+I_{L})]^{*}F(I_{L}) + [N_{data}(2I_{s}+I_{L1}+I_{L2}) - N_{MC,irr}(2I_{s}+I_{L1}+I_{L2})]^{*}F(I_{L1})^{*}F(I_{L2})$ Where $N_{MC,irr}$ is irreducible background contribution, and $F(I_{L})$ is fake ratio, determined from MC and validated in data control regions.

Constraints on RPV couplings

- Non-observation of proton decay effectively excludes processes that violate both lepton and baryon number.
 - Many RPV models assume "single coupling dominance", i.e. turn-on one coupling, leave the others as zero.
- CKM unitarity, and τ decays, give upper limits of order 0.05 on λ couplings (arXiv:0910.4980).
- Neutrino masses constrain λ_{122} λ_{133} $\lambda_{232} \lambda_{233}$ to be smaller than about 5*10⁻⁴ (arXiv:1005.3309)
- Limits on neutron oscillation imply $\lambda''_{11k} < 10^{-8}$.
- Very weak constraints on third-generation λ'' couplings!
- Note that non-zero but small values of couplings would lead to long-lived signatures, e.g. displaced vertices.
 - Lifetime is proportional to $1/(coupling)^2$.
 - See talk by Nimrod Taiblum for an example of ATLAS search for displaced vertices arising from small λ' coupling.

e/mu/tau resonance search: selection and backgrounds.

- Use single electron trigger for eµ and eτ searches
- Single muon trigger for μτ searches.
- Electron or muon candidates must be isolated, and have $p_T > 25$ GeV.
- tau candidates must have $p_T > 20$ GeV.
- BDT discriminator used for tau ID.
- 2 leptons required to have different flavour, opposite charge, and be backto-back in aximuthal angle, $\Delta \phi > 2.7$.

- "Direct lepton backgrounds", e.g. ttbar, Z, WW, ZZ, WZ, Wt, estimated using MC.
- Semi-data-driven methods used to estimate "jet backgrounds", where one or both lepton candidates is a misidentified jet.
 - Main bkg is W+jets.
 - Estimate contribution using control sample with MET>30 GeV.
 - Estimate multi-jet background using "same sign" selection, since prob. of identifying a jet as a lepton is independent of charge.

Use m(II)<200 GeV as a control region for background estimation, m(II)>200 GeV as signal region.