The Higgs sector in U(1) extensions of the MSSM

Jonathan Da Silva

Laboratoire d'Annecy-le-Vieux de Physique Théorique, France

UNIVERSITÉ DE GRENOBLE

SUSY 2013, ICTP, Trieste, August 30, 2013

G. Bélanger, JDS and A. Pukhov, arXiv:1309.soon

Outline

Outline

The model

Constraints

- Z'
- DM
- Higgs + low energy observables
- Scan

Results

- $tan \beta$
- Sfermion masses
- LSP abundance
- Direct detection
- h₁ signal strength and h₂ bounds

Conclusions

Introduction

* In the MSSM, for TeV-scale values of the SUSY-breaking scale M_S : SM-like Higgs boson mass \approx 125 GeV + very small tan β , i.e. \approx 1 \Rightarrow tricky \Rightarrow Higgs boson mass of 125 GeV requires large tan β

The Higgs sector in the UMSSM

Introduction

Introduction

- * In the MSSM, for TeV-scale values of the SUSY-breaking scale M_S : SM-like Higgs boson mass ≈ 125 GeV + very small tan β , i.e. $\approx 1 \Rightarrow$ tricky
 - \Rightarrow Higgs boson mass of 125 GeV requires large $\tan\beta$
- * In singlet extensions (e.g. NMSSM) $m_h pprox 125$ GeV can be achieved with aneta pprox 2

Introduction

Introduction

- * In the MSSM, for TeV-scale values of the SUSY-breaking scale M_S : SM-like Higgs boson mass $\approx 125 \text{ GeV} + \text{very small } \tan \beta$, i.e. $\approx 1 \Rightarrow \text{tricky}$ \Rightarrow Higgs boson mass of 125 GeV requires large $\tan \beta$
- * In singlet extensions (e.g. NMSSM) $m_h \approx 125$ GeV can be achieved with tan $\beta \approx 2$

What about extending the gauge symmetry?

→ Here : the UMSSM

The model

The model

- * Symmetry group : SU(3)_c × SU(2)_L × U(1)_Y × U'(1) Coupling constants : g₃, g₂, g_Y and $g'_1 = \sqrt{\frac{5}{3}}g_Y$
- * U'(1) stems from string-inspired E₆ : E₆ \rightarrow SU(3)_c \times SU(2)_L \times U(1)_Y \times U(1)_{χ} \times U(1)_{ψ} \Rightarrow U'(1) charge :

$$\mathcal{Q}' = \cos \theta_{\mathsf{E}_6} \mathcal{Q}'_{\chi} + \sin \theta_{\mathsf{E}_6} \mathcal{Q}'_{\psi}, \qquad \theta_{\mathsf{E}_6} \in [-\pi/2, \pi/2]$$

* MSSM fields + RH (s)neutrinos + new gauge boson (gaugino) + new singlet (singlino) + O(TeVs)

	\mathcal{Q}_{Q}^{\prime}	\mathcal{Q}'_u	\mathcal{Q}_{d}^{\prime}	\mathcal{Q}_L'	$\mathcal{Q}'_{ u}$	\mathcal{Q}_e'	\mathcal{Q}'_{H_u}	\mathcal{Q}'_{H_d}	$\mathcal{Q}_{\mathcal{S}}'$
$\sqrt{40}Q'_{\gamma}$	-1	-1	3	3	-5	-1	2	-2	0
$\sqrt{24} \mathcal{Q}_\psi^{'}$	1	1	1	1	1	1	-2	-2	4

Superpotential :

$$\mathcal{W}_{\mathsf{UMSSM}} = \mathcal{W}_{\mathsf{MSSM}}|_{\mu=0} + \lambda \mathsf{SH}_{\mathsf{u}}\mathsf{H}_{\mathsf{d}} + \tilde{\nu}_{\mathsf{R}}^*\mathsf{y}_{\nu}\widetilde{\mathsf{L}}\mathsf{H}_{\mathsf{u}} + \mathcal{O}(\mathsf{TeVs})$$

- * As the NMSSM, this model solves the μ problem : $\mu = \lambda \frac{v_s}{\sqrt{2}}$
- * Higgs sector : MSSM fields + 1 singlet \Rightarrow 3 CP-even Higgs bosons $h_i, i \in \{1, 2, 3\}$ New D-terms for the SM-like Higgs boson : $m_{h_1}^2 \le M_Z^2 \cos^2 2\beta + \frac{1}{2}\lambda^2 v^2 \sin^2 2\beta + g_{12}'v^2 (\mathcal{Q}'_{H_d} \cos^2 \beta + \mathcal{Q}'_{H_u} \sin^2 \beta)^2 + \Delta m_h^2$

The model

The model

- * Gauge sector : Physical abelian gauge bosons : Z_1 and Z_2 , mixing between the Z of the SM and the Z', α_Z is the mixing angle $\Rightarrow \tan \beta$ constrained
- * Gauginos sector : 6 neutralinos in the basis $(\widetilde{B}, \widetilde{W}^3, \widetilde{H}^0_d, \widetilde{H}^0_u, \widetilde{S}, \widetilde{B'})$
- * To sum up :

***** Z' heavy \Rightarrow heavy singlet-like Higgs boson \Rightarrow h₂ mostly doublet-like

ATLAS Collaboration, http://cds.cern.ch/record/1525524

Jonathan Da Silva (LAPTh)

- * DM observables for either neutralino or RH sneutrino DM candidate :
 - * $\Omega_{\text{LSP}}h^2 < 0.1221$ (2 σ Planck+WP+highL+BAO upper bound)
 - SI WIMP-nucleon cross section limits from XENON100 (a posteriori)

E. Aprile et al., XENON100 Collaboration, Phys. Rev. Lett. 109 :181301, arXiv :1207.5988

- ★ Theoretical uncertainties (see B. C. Allanach, A. Djouadi, J. L. Kneur, W. Porod, P. Slavich, JHEP 0409 (2004) 044, arXiv :hep-ph/0406166)
 → m_{h1} ∈ [120.63, 130.63] GeV
- ★ Higgs boson signal strengths and low energy observables (a posteriori) ⇒ Modification of the NMSSMTools code : UMSSMTools Limits on signal strengths using G. Bélanger, B. Dumont, U. Ellwanger, J. F. Gunion, S. Kraml, arXiv :1306.2941 : $\chi_i^2 \lesssim 6$ with h₁ → i, i ∈ γγ, VV*, bb, $\tau^+ \tau^-$

Observable	Value
$\mathscr{B}(B^{\pm} \to \tau^{\pm} \nu_{\tau})$	$(0.99\pm0.25) imes~10^{-4}$ UTfit
$\mathscr{B}(B^0_s o \mu^+ \mu^-)$	$(2.95^{+0.74}_{-0.67}) imes 10^{-9}$ LHCb $+$ CMS
ΔM_s	$17.719 \pm 0.043 \ \mathrm{ps^{-1}}$ HFAG
ΔM_d	$0.507\pm0.004~\mathrm{ps}^{-1}$ hfag
$\mathscr{B}(\bar{B}^0 o X_s \gamma)$	$(3.55\pm0.24\pm0.09) imes~10^{-4}$ hfag

Scanning the parameter space :

- * Nuisance parameters :
 - * $m_t = 175.5 \pm 1$ GeV PDG 2012
 - * Quark content of the nucleon (from G. Bélanger, F. Boudjema, A. Pukhov, A. Semenov, arXiv :1305.0237)

Parameter	Value
m_u/m_d	$\textbf{0.46} \pm \textbf{0.05}$
m_s/m_d	$\textbf{27.5} \pm \textbf{0.3}$
$\sigma_{\pi N}$	$34 \pm 2 \; MeV$
σ_s	$42 \pm 5 \; \text{MeV}$

UMSSM parameters :

Parameter	Range	Parameter	Range
m _{ṽR}	[0.05, 2] TeV	A_{λ}	[0, 4] TeV
M _{Z₂}	[2.2, 7] TeV	$A_t, A_b, A_{ au}$	[-4, 4] TeV
α_{Z}	[-10 ⁻³ , 10 ⁻³] rad	$\mathbf{m}_{\mathbf{ ilde Q}_2}, \mathbf{m}_{\mathbf{ ilde u}_3}, \mathbf{m}_{\mathbf{ ilde d}_2}, \mathbf{m}_{\mathbf{ ilde L}_2}, \mathbf{m}_{\mathbf{ ilde e}_3}$	[0, 3] TeV
θ_{E_6}	[- $\pi/2$, $\pi/2$] rad	μ,M_1,M_1'	[0.1, 2] TeV

First and second generation sfermion soft mass terms at 3 TeV

Jonathan Da Silva (LAPTh)

The Higgs sector in the UMSSM

* tan $\beta \approx 1$ + TeV-scale M_S \Rightarrow expected m_{h1} : large contribution from pure UMSSM as well as one-loop stop terms

Jonathan Da Silva (LAPTh)

* Important UMSSM contribution to sfermion masses (dependent on θ_{E_6}): $\Delta_f = \frac{1}{2}g'_1{}^2\mathcal{Q}'_f(\mathcal{Q}'_{H_d}v^2_d + \mathcal{Q}'_{H_u}v^2_u + \mathcal{Q}'_Sv^2_s)$ $\Rightarrow \text{ Condition on neutral LSP put strong constraints on } \theta_{E_6}$

- * $\widetilde{B}, \widetilde{H}$ and $\widetilde{\nu}_{R}$ LSP with the wanted abundance
- * $\tilde{\nu}_{R}$ LSP : same annihilation processes than found in G. Bélanger, JDS, A. Pukhov, JCAP, 1112 :014, arXiv :1110.2414

- * \tilde{B}, \tilde{H} and $\tilde{\nu}_{R}$ LSP with the wanted abundance
- * $\tilde{\nu}_{R}$ LSP : same annihilation processes than found in G. Bélanger, JDS, A. Pukhov, JCAP, 1112 :014, arXiv :1110.2414

* h₁ signal strength mostly compatible with current limits, but also useful to exclude "light" h₂ (\lesssim 300 GeV); large branching ratio into SM-like Higgs boson for such h₂

Jonathan Da Silva (LAPTh)

The Higgs sector in the UMSSM

ICTP, August 30, 2013 15 / 16

Conclusions

- * New D-terms in the UMSSM \Rightarrow low tan β values still allowed for TeV-scale M_S \Rightarrow sfermion sector impacted
- * χ_1^0 or $\tilde{\nu}_R$ LSP that does not overclose the Universe exclude a large region of the parameter space
- *** XENON1T** would probe entirely some scenarios
- * Study of the SM-like Higgs boson puts bounds on the second CP-even Higgs boson : $m_{h_2}\lesssim 300$ GeV excluded in the UMSSM

BACKUP

Jonathan Da Silva (LAPTh)

The Higgs sector in the UMSSM

ICTP, August 30, 2013 10

BACKUP

Jonathan Da Silva (LAPTh)

The Higgs sector in the UMSSM

ICTP, August 30, 2013 16 / 16

BACKUP

BACKUP

New contribution from the Z' to $\Delta\rho:\Delta\rho<2\times10^{-3}\to-6.5\times10^{-4}\lesssim\alpha_Z\lesssim6.9\times10^{-4}$

