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• R-parity violating SUSY @ LHC

• GUT and (baryonic) RPV: the problem

• A simple SO(10) model
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• Most generic superpotential
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Figure 6.5: Squarks would mediate disas-
trously rapid proton decay ifR-parity were
violated by both ∆B = 1 and ∆L = 1 in-
teractions. This example shows p → e+π0

mediated by a strange (or bottom) squark. u
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assignments are L = +1 for Li, L = −1 for ei, and L = 0 for all others. Therefore, the terms in
eq. (6.2.1) violate total lepton number by 1 unit (as well as the individual lepton flavors) and those in
eq. (6.2.2) violate baryon number by 1 unit.

The possible existence of such terms might seem rather disturbing, since corresponding B- and
L-violating processes have not been seen experimentally. The most obvious experimental constraint
comes from the non-observation of proton decay, which would violate both B and L by 1 unit. If both
λ′ and λ′′ couplings were present and unsuppressed, then the lifetime of the proton would be extremely
short. For example, Feynman diagrams like the one in Figure 6.5† would lead to p+ → e+π0 (shown) or
e+K0 or µ+π0 or µ+K0 or νπ+ or νK+ etc. depending on which components of λ′ and λ′′ are largest.‡

As a rough estimate based on dimensional analysis, for example,

Γp→e+π0 ∼ m5
proton

∑

i=2,3

|λ′11iλ′′11i|2/m4
d̃i
, (6.2.3)

which would be a tiny fraction of a second if the couplings were of order unity and the squarks have
masses of order 1 TeV. In contrast, the decay time of the proton into lepton+meson final states is
known experimentally to be in excess of 1032 years. Therefore, at least one of λ′ijk or λ′′11k for each of
i = 1, 2; j = 1, 2; k = 2, 3 must be extremely small. Many other processes also give strong constraints
on the violation of lepton and baryon numbers [67, 68].

One could simply try to take B and L conservation as a postulate in the MSSM. However, this
is clearly a step backward from the situation in the Standard Model, where the conservation of these
quantum numbers is not assumed, but is rather a pleasantly “accidental” consequence of the fact
that there are no possible renormalizable Lagrangian terms that violate B or L. Furthermore, there
is a quite general obstacle to treating B and L as fundamental symmetries of Nature, since they are
known to be necessarily violated by non-perturbative electroweak effects [69] (even though those effects
are calculably negligible for experiments at ordinary energies). Therefore, in the MSSM one adds a
new symmetry, which has the effect of eliminating the possibility of B and L violating terms in the
renormalizable superpotential, while allowing the good terms in eq. (6.1.1). This new symmetry is
called “R-parity” [8] or equivalently “matter parity” [70].

Matter parity is a multiplicatively conserved quantum number defined as

PM = (−1)3(B−L) (6.2.4)

for each particle in the theory. It is easy to check that the quark and lepton supermultiplets all
have PM = −1, while the Higgs supermultiplets Hu and Hd have PM = +1. The gauge bosons and
gauginos of course do not carry baryon number or lepton number, so they are assigned matter parity
PM = +1. The symmetry principle to be enforced is that a candidate term in the Lagrangian (or in
the superpotential) is allowed only if the product of PM for all of the fields in it is +1. It is easy to see
that each of the terms in eqs. (6.2.1) and (6.2.2) is thus forbidden, while the good and necessary terms

†In this diagram and others below, the arrows on propagators are often omitted for simplicity, and external fermion
label refer to physical particle states rather than 2-component fermion fields.

‡The coupling λ′′ must be antisymmetric in its last two flavor indices, since the color indices are combined antisym-
metrically. That is why the squark in Figure 6.5 can be s̃ or b̃, but not d̃, for u, d quarks in the proton.

54

•           violates simultaneously L and B number WRPV

• Most generic superpotential
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The flavour problem can be viewed as the clash between the theoretical expectation

of New Physics (NP) at the TeV scale and the experimental observations in Flavour

Changing Neutral Current (FCNC) processes which severely constrain the scale ⇥NP of

the NP beyond the 104 TeV domain (for a review see e.g. Ref. [1]). If we insist in keeping

⇥NP ⇥ TeV for naturalness, then we have to conclude that the flavour structure of the

NP is highly non-generic.

The Minimal Flavour Violation (MFV) hypothesis [2] is a powerful organizing principle

which states that the sources of flavour symmetry breaking of the NP are aligned to the

Standard Model (SM) Yukawas. This ansatz provides an automatic suppression of the NP

contribution to the flavour violating observables and thus a solution of the aforementioned

flavour problem (see for instance Ref. [3]).

If MFV is at play in the quark sector, it is reasonable then to assume it also for

leptons. However, the extension of MFV to the lepton sector is less straightforward, since

the mechanism itself generating neutrino masses is unknown and several scenarios can be

envisaged. Starting from Ref. [4] many formulations of Minimal Lepton Flavour Violation

(MLFV) have been proposed and analyzed [5, 6, 7, 8, 9, 10, 11].

2
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•           violates simultaneously L and B number WRPV

• Possible solution:                            or (equivalently)     

• Most generic superpotential
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   - B and L accidental global symmetries as in SM
   - LSP is stable (DM candidate)
   - LSP escapes the detector (missing energy)

MP = (�)3(B�L) RP = MP (�)2S
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• R-parity is not necessary

   - Small RPV couplings are “technically natural” (holomorphicity of  W)

• R-parity is not sufficient for matter stability

W5 3 q q q l

⇤
+

ucucdcec

⇤

• R-parity violation might be welcome

   - Neutrino masses within the MSSM field content 

   - Avoids missing energy signatures: LHC bounds can be relaxed
   - DM can still be an unstable gravitino 
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   - Neutrino masses within the MSSM field content 
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[...] [Brust, Katz, Lawrence, Sundrum (2012)] [Csaki, Grossman, Heidenreich (2012)] [Graham, Kaplan, Rajendran, Saraswat 
(2012)] [Allanach, Gripaios (2012)] [Dreiner, Staub, Vicente, Porod (2012)] [Brust, Katz, Sundrum (2012)] [Ruderman, Slayter, 
Weiner (2012)] [Evans, Kats (2012)] [Asano, Rolbiecki, Sakurai (2013)] [Han, Katz, Son, Tweedie (2013)] [Franceschini, Torre 
(2013)] [Krnjaic, Stolarski (2013)] [Bhattacherjee, Evans, Ibe, Matsumoto, Yanagida (2013)] [Franceschini, Mohapatra (2013)] 
[Csaki, Heidenreich (2013)] [Berger, Perelstein, Saelim, Tanedo (2013)] [Florez, Restrepo, Velasquez, Zapata (2013)] [Krnjaic, Tsai 
(2013)] [Monteux (2013)] [Durieux, Smith (2013)] [...]
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mt̃ & 700 GeV

[See plenary talk by J. Richman and parallel talk by M. D’Alfonso]

(barring light-stop window)
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mg̃ & 1.4 TeV

[See parallel talk by M. Barisonzi]
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• R-parity violating decays end up into SM fermions

   - Neutralino decay

   - Stop decay L = 100 µm(��)

✓
500 GeV

mt̃

◆✓
4 · 10�7

�00

◆2

L = 100 µm(��)

✓
mf̃

500 GeV

◆4 ✓100 GeV

m�

◆5 ✓2 · 10�3

�

◆2

Another note on baryonic R-parity violation in GUT

August 20, 2013

Contents

1 An organizing principle 1

1 An organizing principle

16i

〈45R〉 〈45R〉

〈16H〉 16k

16j

10

16− 16 16− 16

γ

γ

φ

φ

t̃

λ′′

b

s

1

χ
f̃

f

λ
f1

f2

2



R-parity violation @ LHC

  Luca Di Luzio (KIT)                                                                                 05/15

• R-parity violating decays end up into SM fermions

• Either baryonic or leptonic RPV because of p-decay 

   - Leptonic: many leptons in the final state 
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• Prompt decays require RPV couplings of (at least) O(10�7)

   - Baryonic: better to hide SUSY into QCD backgrounds

Another note on baryonic R-parity violation in GUT

August 20, 2013
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   - Neutralino decay

   - Stop decay

[See however parallel talk by P. Saraswat]
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• Current limits: LEP + Tevatron 

11Riccardo Torre Light RPV stops hiding in the LHC data

Searches at LEP have set a 
bound (OPAL Collaboration hep-ex/
0310054)

mt̃(✓t̃ = 0) � 88 GeV

mt̃(✓t̃ = 0.98) � 77 GeV

Tevatron (CDF) has an analysis 
setting a stronger bound (CDF 
Collaboration 1303.2699 hep-ex)

mt̃ � 100 GeVmt̃  50 GeV

11Riccardo Torre Light RPV stops hiding in the LHC data

Searches at LEP have set a 
bound (OPAL Collaboration hep-ex/
0310054)

mt̃(✓t̃ = 0) � 88 GeV

mt̃(✓t̃ = 0.98) � 77 GeV

Tevatron (CDF) has an analysis 
setting a stronger bound (CDF 
Collaboration 1303.2699 hep-ex)

mt̃ � 100 GeVmt̃  50 GeV

mt̃ & 100 GeV

• LHC not sensitive yet (however b-tagging techniques can improve on that)
[Franceschini, Torre (2012)]
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• R-parity conserving 

• Baryonic R-parity violation 

• We improve on naturalness 

mt̃ & 100 GeV

mt̃ & 700 GeV mg̃ & 1.4 TeV

mg̃ & 1 TeV

• But what about unification ???

[See however parallel talk by M. Baryakhtar]
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• Natural expectation: RPV couplings either absent or simultaneously present 

• Otherwise exact SU(5) invariance =) � = 1
2�

0 = �00 ⌘ ⇤

•                           remnant of gauged B-L ?MP = (�)3(B�L)
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[Martin (1992)] [Mohapatra (1996)]
[Aulakh, Bajc, Melfo, Rasin, Senjanovic (2000)] [...]
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• Matter stability requires (at least) [Smirnov, Vissani (1996)]

• LSP practically stable on the scale of the detector size

⇤ijk < 10�10

✓
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• Sizable RPV couplings apparently an issue for unification !

•                           remnant of gauged B-L ?
[Aulakh, Bajc, Melfo, Rasin, Senjanovic (2000)] [...]

MP = (�)3(B�L) [Martin (1992)] [Mohapatra (1996)]
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A framework for baryonic R-parity violation in grand unified theories

Luca Di Luzioa, Marco Nardecchiab, and Andrea Romaninoc
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We investigate the possibility of obtaining sizeable R-parity breaking interactions violating baryon-
number but not lepton number within supersymmetric grand unified theories. Such a possibility
allows to ameliorate the naturalness status of supersymmetry while maintaining successful gauge
coupling unification, one of its main phenomenological motivations. We show that this can be
achieved without fine-tuning or the need of large representations in simple SO(10) models.

PACS numbers: 12.10.Dm,12.60.Jv

I. INTRODUCTION

Supersymmetric scenarios without R-parity [1–6] have
received a renewed interest after the negative results of
supersymmetry (SUSY) searches at the LHC. R-parity
accounts for the stability of the lightest supersymmet-
ric particle (LSP), whose escape from the detector gives
rise to the prototypical supersymmetry signal: missing
energy. R-parity violation (RPV) may allow supersym-
metric particles to evade the latter, stringent searches.
In particular, it has been argued that scenarios in which
R-parity is violated through baryon-number-violating in-
teractions could be particularly suited to hide supersym-
metric signals into QCD backgrounds, thus implying a
significant reduction of the current LHC lower bounds
on the mass of the superpartners. Hence the intense re-
search activity on the subject in the recent years [7–29].

In order for baryon number violating RPV operators
to be sizeable enough to hide supersymmetric particles,
lepton number violating operators should be very sup-
pressed, possibly absent. The simultaneous presence of
�B 6= 0 and�L 6= 0 interactions is in fact extremely con-
strained by matter stability. Indeed, R-parity was orig-
inally introduced in order to obtain (accidental) lepton
and baryon number conservation in the minimal super-
symmetric standard model (MSSM), thus protecting it
from renormalizable sources of potentially way too large
proton decay rate and neutrino masses. However, it is
known that it su�ces to assume the absence of R-parity
lepton number violating operators, by means of a “lep-
tonic R-parity”, to get rid of such sources [4, 5].

Introducing baryonic RPV is therefore relatively safe
if leptonic RPV is absent. On the other hand, one can
wonder whether such an asymmetry between lepton and
baryon number violating operators is compatible with
grand unified theories (GUTs). After all, one of the mo-
tivations to persist on supersymmetric models despite
the lack of signals is the very success of supersymmet-
ric grand unification. This is the issue we would like to
address in this paper.

In the presence of grand unification, the natural expec-
tation is that baryonic and leptonic RPV couplings are

either absent or simultaneously present, as quarks and
leptons share the same grand-unified multiplets [30–35].
Indeed, exact SU(5) invariance forces baryonic RPV to
be accompanied by leptonic RPV. However, a source of
the asymmetry between the two types of RPV can be
generated by SU(5) breaking.

To be more specific let us state our problem in the
following terms: we would like to find a supersymmetric
GUT whose low-energy limit, well below the unification
scale MG, is described by the MSSM field content and
gauge group and by a superpotential whose renormaliz-
able part is given by

Wren = WMSSM + �00
ijku

c
id

c
jd

c
k, (1)

where �00
ijk is antisymmetric in the flavour indices j, k.

The extra operator violates R-parity and baryon number
(�B = �1). Since grand unified gauge groups trans-
forms leptons into baryons (preserving B�L in the min-
imal case of SU(5)), one would expect that operator to
be accompanied by RPV and lepton-number violating
(�L = 1) operators such as �ijkeci lj lk and �0

ijkqid
c
j lk.

Indeed, in minimal SU(5) grand unification dci and li are
unified in a 5i and qi, uc

i , e
c
i are unified in a 10i and the

three above operators all come from ⇤ijk10i5j5k, which
gives �ijk = 1

2�
0
ijk = �00

ijk = ⇤ijk. In this case, the
bounds from matter stability require ⇤ijk to be smaller
than at least 10�10 for any value of i, j, k and for su-
perpartners around the TeV scale [36]. Such tiny cou-
plings would be irrelevant for collider physics since the
LSP would be stable on the scale of the detector size. We
then need to find a way to obtain sizeable �00 couplings
together with vanishing �,�0.

While leptonic RPV in GUTs has been investigated
in a number of papers, see e.g. [4, 36–44], to our knowl-
edge, such a problem was only considered in the con-
text of SU(5) by Smirnov and Vissani [36] and by Tam-
vakis [45].1 In [36], the vanishing of � and �0 was achieved

1 There also exist models of baryonic R-parity violation in Flipped-
SU(5) [42, 45] and SU(5)⌦ SU(3) [23].
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I. INTRODUCTION

Supersymmetric scenarios without R-parity [1–6] have
received a renewed interest after the negative results of
supersymmetry (SUSY) searches at the LHC. R-parity
accounts for the stability of the lightest supersymmet-
ric particle (LSP), whose escape from the detector gives
rise to the prototypical supersymmetry signal: missing
energy. R-parity violation (RPV) may allow supersym-
metric particles to evade the latter, stringent searches.
In particular, it has been argued that scenarios in which
R-parity is violated through baryon-number-violating in-
teractions could be particularly suited to hide supersym-
metric signals into QCD backgrounds, thus implying a
significant reduction of the current LHC lower bounds
on the mass of the superpartners. Hence the intense re-
search activity on the subject in the recent years [7–29].

In order for baryon number violating RPV operators
to be sizeable enough to hide supersymmetric particles,
lepton number violating operators should be very sup-
pressed, possibly absent. The simultaneous presence of
�B 6= 0 and�L 6= 0 interactions is in fact extremely con-
strained by matter stability. Indeed, R-parity was orig-
inally introduced in order to obtain (accidental) lepton
and baryon number conservation in the minimal super-
symmetric standard model (MSSM), thus protecting it
from renormalizable sources of potentially way too large
proton decay rate and neutrino masses. However, it is
known that it su�ces to assume the absence of R-parity
lepton number violating operators, by means of a “lep-
tonic R-parity”, to get rid of such sources [4, 5].

Introducing baryonic RPV is therefore relatively safe
if leptonic RPV is absent. On the other hand, one can
wonder whether such an asymmetry between lepton and
baryon number violating operators is compatible with
grand unified theories (GUTs). After all, one of the mo-
tivations to persist on supersymmetric models despite
the lack of signals is the very success of supersymmet-
ric grand unification. This is the issue we would like to
address in this paper.

In the presence of grand unification, the natural expec-
tation is that baryonic and leptonic RPV couplings are

either absent or simultaneously present, as quarks and
leptons share the same grand-unified multiplets [30–35].
Indeed, exact SU(5) invariance forces baryonic RPV to
be accompanied by leptonic RPV. However, a source of
the asymmetry between the two types of RPV can be
generated by SU(5) breaking.

To be more specific let us state our problem in the
following terms: we would like to find a supersymmetric
GUT whose low-energy limit, well below the unification
scale MG, is described by the MSSM field content and
gauge group and by a superpotential whose renormaliz-
able part is given by

Wren = WMSSM + �00
ijku

c
id

c
jd

c
k, (1)

where �00
ijk is antisymmetric in the flavour indices j, k.

The extra operator violates R-parity and baryon number
(�B = �1). Since grand unified gauge groups trans-
forms leptons into baryons (preserving B�L in the min-
imal case of SU(5)), one would expect that operator to
be accompanied by RPV and lepton-number violating
(�L = 1) operators such as �ijkeci lj lk and �0

ijkqid
c
j lk.

Indeed, in minimal SU(5) grand unification dci and li are
unified in a 5i and qi, uc

i , e
c
i are unified in a 10i and the

three above operators all come from ⇤ijk10i5j5k, which
gives �ijk = 1

2�
0
ijk = �00

ijk = ⇤ijk. In this case, the
bounds from matter stability require ⇤ijk to be smaller
than at least 10�10 for any value of i, j, k and for su-
perpartners around the TeV scale [36]. Such tiny cou-
plings would be irrelevant for collider physics since the
LSP would be stable on the scale of the detector size. We
then need to find a way to obtain sizeable �00 couplings
together with vanishing �,�0.

While leptonic RPV in GUTs has been investigated
in a number of papers, see e.g. [4, 36–44], to our knowl-
edge, such a problem was only considered in the con-
text of SU(5) by Smirnov and Vissani [36] and by Tam-
vakis [45].1 In [36], the vanishing of � and �0 was achieved

1 There also exist models of baryonic R-parity violation in Flipped-
SU(5) [42, 45] and SU(5)⌦ SU(3) [23].
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I. INTRODUCTION

Supersymmetric scenarios without R-parity [1–6] have
received a renewed interest after the negative results of
supersymmetry (SUSY) searches at the LHC. R-parity
accounts for the stability of the lightest supersymmet-
ric particle (LSP), whose escape from the detector gives
rise to the prototypical supersymmetry signal: missing
energy. R-parity violation (RPV) may allow supersym-
metric particles to evade the latter, stringent searches.
In particular, it has been argued that scenarios in which
R-parity is violated through baryon-number-violating in-
teractions could be particularly suited to hide supersym-
metric signals into QCD backgrounds, thus implying a
significant reduction of the current LHC lower bounds
on the mass of the superpartners. Hence the intense re-
search activity on the subject in the recent years [7–29].

In order for baryon number violating RPV operators
to be sizeable enough to hide supersymmetric particles,
lepton number violating operators should be very sup-
pressed, possibly absent. The simultaneous presence of
�B 6= 0 and�L 6= 0 interactions is in fact extremely con-
strained by matter stability. Indeed, R-parity was orig-
inally introduced in order to obtain (accidental) lepton
and baryon number conservation in the minimal super-
symmetric standard model (MSSM), thus protecting it
from renormalizable sources of potentially way too large
proton decay rate and neutrino masses. However, it is
known that it su�ces to assume the absence of R-parity
lepton number violating operators, by means of a “lep-
tonic R-parity”, to get rid of such sources [4, 5].

Introducing baryonic RPV is therefore relatively safe
if leptonic RPV is absent. On the other hand, one can
wonder whether such an asymmetry between lepton and
baryon number violating operators is compatible with
grand unified theories (GUTs). After all, one of the mo-
tivations to persist on supersymmetric models despite
the lack of signals is the very success of supersymmet-
ric grand unification. This is the issue we would like to
address in this paper.

In the presence of grand unification, the natural expec-
tation is that baryonic and leptonic RPV couplings are

either absent or simultaneously present, as quarks and
leptons share the same grand-unified multiplets [30–35].
Indeed, exact SU(5) invariance forces baryonic RPV to
be accompanied by leptonic RPV. However, a source of
the asymmetry between the two types of RPV can be
generated by SU(5) breaking.

To be more specific let us state our problem in the
following terms: we would like to find a supersymmetric
GUT whose low-energy limit, well below the unification
scale MG, is described by the MSSM field content and
gauge group and by a superpotential whose renormaliz-
able part is given by

Wren = WMSSM + �00
ijku
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k, (1)

where �00
ijk is antisymmetric in the flavour indices j, k.

The extra operator violates R-parity and baryon number
(�B = �1). Since grand unified gauge groups trans-
forms leptons into baryons (preserving B�L in the min-
imal case of SU(5)), one would expect that operator to
be accompanied by RPV and lepton-number violating
(�L = 1) operators such as �ijkeci lj lk and �0

ijkqid
c
j lk.

Indeed, in minimal SU(5) grand unification dci and li are
unified in a 5i and qi, uc

i , e
c
i are unified in a 10i and the

three above operators all come from ⇤ijk10i5j5k, which
gives �ijk = 1
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0
ijk = �00

ijk = ⇤ijk. In this case, the
bounds from matter stability require ⇤ijk to be smaller
than at least 10�10 for any value of i, j, k and for su-
perpartners around the TeV scale [36]. Such tiny cou-
plings would be irrelevant for collider physics since the
LSP would be stable on the scale of the detector size. We
then need to find a way to obtain sizeable �00 couplings
together with vanishing �,�0.

While leptonic RPV in GUTs has been investigated
in a number of papers, see e.g. [4, 36–44], to our knowl-
edge, such a problem was only considered in the con-
text of SU(5) by Smirnov and Vissani [36] and by Tam-
vakis [45].1 In [36], the vanishing of � and �0 was achieved

1 There also exist models of baryonic R-parity violation in Flipped-
SU(5) [42, 45] and SU(5)⌦ SU(3) [23].
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• Let us consider SO(10) with the standard embedding of matter 

• To get           we need a trilinear term in 

16a = qa � uc
a � dca � la � eca � ⌫ca (a = 1, 2, 3)

16a

16H16a16b16c
⇤

h16Hi=V16�������! V16

⇤
1016a516b516c 3 ecl l, q dcl, ucdcdc

ucdcdc
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• The unwanted operators feature SU(2)L doublets (q and l)

• Let us consider SO(10) with the standard embedding of matter 

• To get           we need a trilinear term in 

h45Hi = V45T3R (h45Hi16a)16 = V45(�uc
a + dca � ⌫ca + eca)

16a = qa � uc
a � dca � la � eca � ⌫ca (a = 1, 2, 3)

16a

16H16a16b16c
⇤

h16Hi=V16�������! V16

⇤
1016a516b516c 3 ecl l, q dcl, ucdcdc

ucdcdc

• An adjoint VEV in the T3R direction can project out the SU(2)L components                           

• Analogy with the Dimopoulos-Wilczek mechanism for 2-3 splitting in SO(10)
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• NR operator points towards its UV completion (not unique)

5

V45TB�L in the TB�L direction. On top of the three
16a needed to reproduce the SM chiral field content, the
“matter” content involves a 10 and three 10a, a = 1, 2, 3.
The minimal matter content relevant to our goal is then

16a, 10a, 10 45H , 16H , 16H . (11)

The possible sources of the RPV operator uc
id

c
jd

c
k are

16a16b10, 16a16b10c. The latter generically also gener-
ates lepton number violating operators, unless a specific
flavour structure is specified. Let us then consider the
following superpotential involving the former:

W3 = �ab16a16b10 + ↵a10 45H10a
+ ↵ab10a45H10b + hab16H16a10b. (12)

The light fields qa, uc
a, e

c
a are only contained in the 16a.

The operator hab16H16a10b forces the light lepton dou-
blets la to lie in the 10a only, whereas the light dci are both
in the 10a, the 16a, and the 10 because of the mixing in-
duced by ↵a10 45H10a and ↵ab10a45H10b (note that the
second one is necessary otherwise only a single light com-
ponent would appear in both 16a and 10 and �00

ijk would
vanish because of the antisymmetry). Only the lepton
number conserving RPV operator is thus generated.

The embedding of the la and part of the dca in the
10a, forced by the operator hab16H16a10b allows to ob-
tain positive, universal sfermion masses at the tree level,
if supersymmetry is broken by the vev of a 16 [64–68].
In this context, the presence of three 16a � 10a can be
associated to a further stage of unification in E6 [69].
The embedding through 16a � 10a also allows to obtain
a predictive framework for leptogenesis [70, 71].

The doublet-triplet splitting in the Higgs sector could
be in principle obtained for free. Indeed, the doublets
in the 10 are also light and could play the role of the
Higgs doublets. The up Yukawa interactions would in
this case provided by the very same operator generating
�00
ijk. However, no lepton Yukawa would be generated.

Therefore, we need to add again an additional 10H to
accommodate the light Higgs fields and make the dou-
blets in the 10 heavy by adding a M10102 mass term.

Adding the term �abc16a16b10c or mass terms in the
form Mab10a10b or Ma10a10 would introduce lepton
number violation. All other terms involving two matter
fields are allowed.

C. On the naturalness of the superpotential

A comment on the flavour structure of the superpo-
tential in Eq. (9) is in order. We achieved our goal of
generating an isolated baryonic RPV operator without
invoking a special structure with respect to the flavour in-
dex a = 1, 2, 3. On the other hand, we implicitely distin-
guished the three 16a from the 16H and 16. For example,
we assumed 16H16a10 to be present in the superpoten-
tial in Eq. (9), while 16a16b10 is not. The question then
arises whether it is possible to find a symmetry forcing

the superpotential to have the desired form. The an-
swer to this question depends on the form of WH , which
constrains the quantum numbers of 16H , 16H , 45H . Let
us consider for example the case in which WH contains
the terms M45452H and X(16H16H � V 2

16), where X is
an SO(10) singlet, as e.g. in [50, 65]. In such a case, it
turns out that it is not possible to find a symmetry that
allows all the terms we need and forbids the ones that
should not appear. In particular, it is not possible to find
any symmetry that distinguishes the fields 16H and 16a.4

Nonetheless, the structure of the superpotential we need
can be justified at a more fundamental level, once the
origin of the flavour structure of the superpotential (and
of the SM fermions) is addressed. For instance, one could
envisage the presence of an SU(3)H horizontal symmetry
under which the 16a transforms as the fundamental of
SU(3)H , while the 16H transforms trivially. The flavor
symmetry is then formally restored in the superpotential
considering the various couplings as spurions. We will
illustrate this point in more detail in Sect. IVA.

IV. ANALYSIS OF A SIMPLE MODEL

In this section we study in greater detail the first model
of Sect. III A. To this end we consider the superpotential
in Eq. (9) augmented with a mass term for the 10, namely

WRPV = �16 16 10 + ↵a16 45H16a

+ �a16H16a10 +M161616 +
M10

2
10 10 , (13)

where the adjoint gets a vev along the 3R generator. For
simplicity, we will assume in what follows all the para-
meters to be real.

The M10 mass term does not change the conclusions
of Sect. III A and it allows to derive a limit where the
expression of �00

ijk assumes a simple form in terms of the
superpotential parameters of Eq. (13). Let us consider,
indeed, the limit in which the extra vector-like states
10� 16� 16 are much heavier than the the GUT vevs,

M10,M16 � V16, V45. (14)

In such a case the light MSSM superfields are mostly
contained (up to V/M corrections) in the 16a and one
can integrate out the heavy fields 10, 16 and 16 at the
SO(10) level, thus obtaining at the leading order in 1/M

10 ⇡ � 1

M10
(�a16H16a)10 , (15)

16 ⇡ � 1

M16
(↵a45H16a)16 , (16)

4 On the other hand, is it possible to find a Z2 symmetry which dis-
criminates 16 from 16H and 16a (and 16 from 16H as well). An
explicit example being: Z2(45H , 10, 16a, 16, 16H , 16, 16H , X) =
(�,+,+,�,+,�,+,+).
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where the subscripts denote the proper SO(10) contrac-
tions and the 16 should be set to zero at this order. Sub-
stituting the full solutions for 10, 16, 16 into Eq. (13) and
expanding at the third order in 1/M we get

W e↵
RPV ⇡ � 1

2M10
(�a16H16a)

2
10

� 1

M2
16M10

� (↵a45H16a)
2
16 (�c16H16c)10 . (17)

While the first term in Eq. (17) is irrelevant for our pur-
pose, the second one leads, upon GUT-symmetry break-
ing, to the �B = 1 RPV operator �00

abcu
c
ad

c
bd

c
c, with

�00
abc =

V 2
45 V16

M2
16 M10

�↵a↵[b�c] . (18)

In the expression above the square brackets denote anti-
symmetrization.

The result in Eq. (18) can be derived in a number of
di↵erent ways. For instance, one can directly inspect the
mass matrices of the relevant fields upon GUT-symmetry
breaking (cf. Eq. (A37) in Appendix A) or, from a dia-
grammatic point of view, compute the tree-level graph in
Fig. 1.

FIG. 1: SO(10) super-diagram leading to the �B = 1 RPV
operator in the e↵ective MSSM theory. The vertices and prop-
agators are specified by the superpotential in Eq. (13).

Note that the light fields uc
a, dca in Eq. (18) do not

necessarily correspond to fermion mass eigenstates. The
latter are in fact determined by the diagonalisation of
the SM Yukawa couplings, which have not been specified
so far. In the fermion mass eigenstate basis, in which
the low-energy bounds on �00

ijk are extracted, Eq. (18)
becomes

�00
ijk / (Vuc)ai (Vdc)b[j(Vdc)ck]↵a↵b�c , (19)

where Vuc and Vdc are the unitary transformations used
to diagonalize the up and down Yukawa couplings (on the
quark singlet side), determined by the SO(10) Yukawa
sector.

This leads us to the discussion of the Yukawa sector.
As anticipated in Sect. III A, an additional 10H must be

added in order to accommodate the Higgs field. The SM
Yukawa interactions then follow from

WY = yab16a 16b 10H+ya16a16 10H+y 16 16 10H , (20)

where the last term does not to contribute as the 16
turns out to contain only SU(2)L singlet fields (see Ap-
pendix A).

Simple expressions for the SM Yukawa matrices can
be obtained at the leading order in the limit M � V by
using Eq. (16):

W e↵
Y = yab16a 16b 10H � ya

M16
16a (↵b45H16b)16 10H .

(21)
Denoting the up-quark, down-quark, charged-lepton and
Dirac-neutrino mass matrices by Mu, Md, Me and MD

respectively, Eq. (21) leads to

(Mu)ab = (2yab + ✓ ya↵̂b)vu , (22)
(Md)ab = (2yab � ✓ ya↵̂b)vd , (23)
(Me)ab = (2yab � ✓ ya↵̂b)vd , (24)
(MD)ab = (2yab + ✓ ya↵̂b)vu , (25)

where yab is symmetric, ✓ ⌘ ↵V45/M16, ↵ ⌘ pP
a ↵

2
a,

and vu,d are the EW vevs. The above equations can re-
produce the observed patter of fermion masses and mix-
ings,5 but the larger hierarchy of masses in the up sec-
tor and the deviations from SU(5) relations for the light
down quark and charged lepton require a certain amount
of fine-tuning. Moreover, the above equations do not ad-
dress the origin of the fermion mass hierarchy. Both such
issues can be addressed in the context of flavour models,
as shown by the simple example in the next subsection.

A. Addressing flavour

So far, we did not make any assumption on the flavour
structure of the couplings in Eq. (13). On the other hand,
the latter is relevant for three reasons: i) to account at
the same time for the pattern of SM fermion masses and
mixings, ii) to distinguish di↵erent representations with
the same gauge quantum number (e.g. 16H and 16a), thus
making the superpotential in Eq. (13) technically natu-
ral, and iii) to relate the size of the RPV couplings to
the pattern of fermion masses and mixings. In this sec-
tion we analyse the consequences of having a controlled
flavour structure by means of a simple flavour model.

Let us assume that the theory specified by Eq. (13)
and Eq. (20) is invariant under the horizontal symmetry

5 The relation Mu = MD implies that the neutrino sector must
be extended with a Majorana mass term for ⌫c⌫c. This can
be achieved, for instance, by means of the e↵ective operator
16i16j16H16H/⇤. In this context it is worth to recall that,
due to the selection rules imposed by kinematics and Lorentz
invariance, the simultaneous presence of �B = 1 and �L = 2
interactions do not endanger matter stability.

• Hence after SO(10) breaking  

16H(45H16a)16(45H16b)1616c
⇤3

3 uc
ad

c
bd

c
c

• Integrating out the vector-like states in the decoupling limit V45, V16 ⌧ M16,M45
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where the subscripts denote the proper SO(10) contrac-
tions and the 16 should be set to zero at this order. Sub-
stituting the full solutions for 10, 16, 16 into Eq. (13) and
expanding at the third order in 1/M we get
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RPV = � 1
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(�a16H16a)

2
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M2
16M10

� (↵a45H16a)
2
16 (�c16H16c)10 . (17)

While the first term in Eq. (17) is irrelevant for our pur-
pose, the second one leads, upon GUT-symmetry break-
ing, to the �B = 1 RPV operator �00

abcu
c
ad

c
bd

c
c, with

�00
abc =

V 2
45 V16

M2
16 M10

�↵a↵[b�c] . (18)

In the expression above the square brackets stand for
anti-symmetrization (the symmetric part is indeed pro-
jected to zero due to the gauge contractions with dcbd

c
c).

The result in Eq. (18) can be derived in a number of
di↵erent ways as well. For instance, one can directly in-
spect the mass matrices of the relevant fields upon GUT-
symmetry breaking (cf. Eq. (A37) in Appendix A) or,
from a diagrammatic point of view, compute the tree-
level graph in Fig. 1.

FIG. 1: SO(10) super-diagram leading to the �B = 1 RPV
operator in the e↵ective MSSM theory. The vertices and prop-
agators are specified by the superpotential in Eq. (13).

Note that the light fields uc
a, dca in Eq. (18) do not

necessarily correspond to fermion mass eigenstates. The
latter are in fact determined by the diagonalisation of
the SM Yukawa couplings, which have not been specified
so far. In the fermion mass eigenstate basis, in which
the low-energy bounds on �00

ijk are extracted, Eq. (18)
becomes

�00
ijk / (Vuc)ai (Vdc)b[j(Vdc)ck]↵a↵b�c , (19)

where Vuc and Vdc are the unitary transformations used
to diagonalize the up and down Yukawa couplings (on the
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sector.
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WY = yab16a 16b 10H+ya16a16 10H+y 16 16 10H , (20)
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W e↵
Y = yab16a 16b 10H � ya

M16
16a (↵b45H16b)16 10H .

(21)
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respectively, Eq. (21) leads to
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a ↵

2
a,

and vu,d are the EW vevs. The above equations can re-
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A. Addressing flavour

So far, we did not make any assumption on the flavour
structure of the couplings in Eq. (13). On the other hand,
the latter is relevant for three reasons: i) to account at
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mixings, ii) to distinguish di↵erent representations with
the same gauge quantum number (e.g. 16H and 16a),
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nically natural, and iii) to relate the size of the RPV
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In this section we analyse the consequences of having a
controlled flavour structure by means of a simple flavour
model.

5 The relation Mu = MD implies that the neutrino sector must
be extended with a Majorana mass term for ⌫c⌫c. This can
be achieved, for instance, by means of the e↵ective operator
16i16j16H16H/⇤. In this context it is worth to recall that,
due to the selection rules imposed by kinematics and Lorentz
invariance, the simultaneous presence of �B = 1 and �L = 2
interactions do not endanger matter stability.
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V45TB�L in the TB�L direction. On top of the three
16a needed to reproduce the SM chiral field content, the
“matter” content involves a 10 and three 10a, a = 1, 2, 3.
The minimal matter content relevant to our goal is then

16a, 10a, 10 45H , 16H , 16H . (11)

The possible sources of the RPV operator uc
id

c
jd

c
k are

16a16b10, 16a16b10c. The latter generically also gener-
ates lepton number violating operators, unless a specific
flavour structure is specified. Let us then consider the
following superpotential involving the former:

W3 = �ab16a16b10 + ↵a10 45H10a
+ ↵ab10a45H10b + hab16H16a10b. (12)

The light fields qa, uc
a, e

c
a are only contained in the 16a.

The operator hab16H16a10b forces the light lepton dou-
blets la to lie in the 10a only, whereas the light dci are both
in the 10a, the 16a, and the 10 because of the mixing in-
duced by ↵a10 45H10a and ↵ab10a45H10b (note that the
second one is necessary otherwise only a single light com-
ponent would appear in both 16a and 10 and �00

ijk would
vanish because of the antisymmetry). Only the lepton
number conserving RPV operator is thus generated.

The embedding of the la and part of the dca in the
10a, forced by the operator hab16H16a10b allows to ob-
tain positive, universal sfermion masses at the tree level,
if supersymmetry is broken by the vev of a 16 [64–68].
In this context, the presence of three 16a � 10a can be
associated to a further stage of unification in E6 [69].
The embedding through 16a � 10a also allows to obtain
a predictive framework for leptogenesis [70, 71].

The doublet-triplet splitting in the Higgs sector could
be in principle obtained for free. Indeed, the doublets
in the 10 are also light and could play the role of the
Higgs doublets. The up Yukawa interactions would in
this case provided by the very same operator generating
�00
ijk. However, no lepton Yukawa would be generated.

Therefore, we need to add again an additional 10H to
accommodate the light Higgs fields and make the dou-
blets in the 10 heavy by adding a M10102 mass term.

Adding the term �abc16a16b10c or mass terms in the
form Mab10a10b or Ma10a10 would introduce lepton
number violation. All other terms involving two matter
fields are allowed.

C. On the naturalness of the superpotential

A comment on the flavour structure of the superpo-
tential in Eq. (9) is in order. We achieved our goal of
generating an isolated baryonic RPV operator without
invoking a special structure with respect to the flavour in-
dex a = 1, 2, 3. On the other hand, we implicitely distin-
guished the three 16a from the 16H and 16. For example,
we assumed 16H16a10 to be present in the superpoten-
tial in Eq. (9), while 16a16b10 is not. The question then
arises whether it is possible to find a symmetry forcing

the superpotential to have the desired form. The an-
swer to this question depends on the form of WH , which
constrains the quantum numbers of 16H , 16H , 45H . Let
us consider for example the case in which WH contains
the terms M45452H and X(16H16H � V 2

16), where X is
an SO(10) singlet, as e.g. in [50, 65]. In such a case, it
turns out that it is not possible to find a symmetry that
allows all the terms we need and forbids the ones that
should not appear. In particular, it is not possible to find
any symmetry that distinguishes the fields 16H and 16a.4

Nonetheless, the structure of the superpotential we need
can be justified at a more fundamental level, once the
origin of the flavour structure of the superpotential (and
of the SM fermions) is addressed. For instance, one could
envisage the presence of an SU(3)H horizontal symmetry
under which the 16a transforms as the fundamental of
SU(3)H , while the 16H transforms trivially. The flavor
symmetry is then formally restored in the superpotential
considering the various couplings as spurions. We will
illustrate this point in more detail in Sect. IVA.

IV. ANALYSIS OF A SIMPLE MODEL

In this section we study in greater detail the first model
of Sect. III A. To this end we consider the superpotential
in Eq. (9) augmented with a mass term for the 10, namely

WRPV = �16 16 10 + ↵a16 45H16a

+ �a16H16a10 +M161616 +
M10

2
10 10 , (13)

where the adjoint gets a vev along the 3R generator. For
simplicity, we will assume in what follows all the para-
meters to be real.

The M10 mass term does not change the conclusions
of Sect. III A and it allows to derive a limit where the
expression of �00

ijk assumes a simple form in terms of the
superpotential parameters of Eq. (13). Let us consider,
indeed, the limit in which the extra vector-like states
10� 16� 16 are much heavier than the the GUT vevs,

M10,M16 � V16, V45. (14)

In such a case the light MSSM superfields are mostly
contained (up to V/M corrections) in the 16a and one
can integrate out the heavy fields 10, 16 and 16 at the
SO(10) level, thus obtaining at the leading order in 1/M

10 ⇡ � 1

M10
(�a16H16a)10 , (15)

16 ⇡ � 1

M16
(↵a45H16a)16 , (16)

4 On the other hand, is it possible to find a Z2 symmetry which dis-
criminates 16 from 16H and 16a (and 16 from 16H as well). An
explicit example being: Z2(45H , 10, 16a, 16, 16H , 16, 16H , X) =
(�,+,+,�,+,�,+,+).
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low-energy correlations among the RPV couplings. For
instance, we find that the following relations

�00
ids

�00
jds

=
�00
idb

�00
jdb

=
�00
isb

�00
jsb

, (59)

must be satisfied for i, j = u, c, t. However, the rela-
tions in Eq. (59) are irrelevant when crossed with the
low-energy bounds in Eqs. (49)–(56) whenever the abso-
lute size of �00 is smaller than O(10�5).

The absolute size of �00 predicted by the GUT model
is in general model dependent. Interestingly, in the case
of a hierarchy such as the one in Eq. (41) or Eq. (14), the
value for the couplings �00 can be expected to lie in the
10�7 . �00 . 10�5 window mentioned above, which sat-
isfies all the low-energy bounds. Upper bounds coming
from the requirement of not washing out a pre-existing
baryon asymmetry generated above the EW scale turn
out to give �00 < 3 · 10�7 for sfermion masses of about 1
TeV [75].

In the presence of additional assumption on a common
origin of the flavour structure of both the SM fermions
and the RPV couplings, the RPV couplings also show
a hierarchical pattern, as illustrated by the example in
Sect. IVA. A simple consequence is that a stop will decay
predominantly into t̃ ! bs.

VI. SUMMARY

Supersymmetric models with R-parity violation have
the potential to relieve some of the pressure on the natu-
ralness of supersymmetric extensions of the SM that fol-
lows the negative results so far of searches at the LHC.
This is welcome, as providing a natural framework for
electroweak symmetry breaking is one of the main phe-
nomenological motivations of supersymmetry. On the
other hand, this requires baryon number violating RPV
operators not to be accompanied by lepton number vi-
olating ones, which in turn may seem to require giving
up another important phenomenological motivation: the
possibility to explain the SM fermion gauge quantum
numbers within a grand unified framework leading to
a successful prediction for the unification of gauge cou-
plings. We have shown that this is not the case. Dimen-
sion four lepton number violating interactions can vanish
despite the presence of sizeable baryon number violating
interactions and the existence of a grand unified gauge
symmetry relating baryon and leptons in models in which
the necessary sources of GUT-breaking split the unified
multiplets and additional vector-like matter is added to
the MSSM chiral content.

In particular, we have shown that this can be achieved
without fine-tuning or the need of large representations
in simple renormalizable SO(10) models in which the ad-
joint vev is aligned along the 3R or B-L generators. In
this context, it is also possible to relate the size of bary-
onic R-parity violation to the origin of the SM fermion

mass hierarchy and to the success (to some extent) of
unified relations among third family fermion masses.
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Appendix A: Details of the model in Sect. IV

In this appendix we illustrate the details of the anal-
ysis of the model specified by Eq. (13) and Eq. (20) of
Sect. IV. In order to identify the light MSSM components
populating the SO(10) fields 16a, 16, and 10, one has to
inspect the mass matrices stemming from Eq. (13) upon
SO(10)-symmetry breaking. In particular, the piece of
superpotential responsible for the non-pure embedding of
the MSSM degrees of freedom into the relevant SO(10)
representations reads

W � ↵a16 45H16a + �a16H16a10

+M161616 +
M10

2
10 10 , (A1)

where the Higgs superfields 45H and 16H are assumed to
pick up a GUT-scale vev h45Hi = V45T3R and h16Hi =
V16, along the SU(4)PS ⌦ SU(2)L ⌦ U(1)R and SU(5)
invariant directions respectively.

The mechanism we are going to consider is based on
the fact that the 45H vev picks up the SU(2)L singlet
components of 16a and the vev of the 16H picks up the
516a and 510 SU(5) components of 16a and 10. Hence,
upon SO(10)-symmetry breaking, Eq. (A1) leads to the
following mass matrices involving the MSSM-like degrees
of freedom:

�
d
c

16 d
c

10

�✓V45 ↵a M16 0
V16 �a 0 M10

◆0

@
dc16a
dc16
dc10

1

A , (A2)

�
l16 l10

�✓ 0 M16 0
V16 �a 0 M10

◆0

@
l16a
l16
l10

1

A , (A3)
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�
d
c

16 d
c

10

�✓V45 ↵a M16 0
V16 �a 0 M10

◆0

@
dc16a
dc16
dc10

1

A , (A2)

�
l16 l10

�✓ 0 M16 0
V16 �a 0 M10

◆0

@
l16a
l16
l10

1

A , (A3)
10

�
uc
16

� ��V45 ↵a M16

�✓uc
16a
uc
16

◆
, (A4)

�
ec
16

� �
V45 ↵a M16

�✓ec16a
ec16

◆
, (A5)

�
q16

� �
0 M16

�✓q16a
q16

◆
. (A6)

Let us leave aside for a while the dc-like states and focus
on the others. From Eqs. (A3)–(A6) one can readily find
the heavy (GUT-scale) mass eigenstates

L1 = l16 , (A7)

L2 = cos� l10 + sin� �̂al16a , (A8)

U c = cos ✓ uc
16 � sin ✓ ↵̂au

c
16a , (A9)

Ec = cos ✓ ec16 + sin ✓ ↵̂ae
c
16a , (A10)

Q = q16 , (A11)

where we defined the quantities tan ✓ ⌘ V45↵/M16 and
tan� ⌘ V16�/M10, and the normalized vectors ↵̂a ⌘
↵a/↵ and �̂a ⌘ �a/�, with ↵ ⌘ pP

a ↵
2
a and � ⌘pP

a �
2
a. The light MSSM components la, uc

a, eca, qa
(a = 1, 2, 3), can be identified with the linear combina-
tions orthogonal to those in Eqs. (A7)–(A11). A possible
choice is

l3 = � sin� l10 + cos� �̂al16a (A12)
uc
3 = sin ✓ uc

16 + cos ✓ ↵̂au
c
16a , (A13)

ec3 = � sin ✓ ec16 + cos ✓ ↵̂ae
c
16a , (A14)

while the remaining light components components: lm,
uc
m, ecm (m = 1, 2) and qa (a = 1, 2, 3) are only contained

in the 16a. In particular, we are interested in the pro-
jection of the 10 and 16 fields on the light eigenstates.
Inverting the transformations in Eqs. (A7)–(A14) we get

l10 ! � sin� l3 , (A15)
l16 ! 0 , (A16)
uc
16 ! sin ✓ uc

3 , (A17)
ec16 ! � sin ✓ ec3 , (A18)
q16 ! 0 . (A19)

The identification of the dc-like light states is more in-
volved. Therefore, let us first consider the simple limit
in which the vectors (↵a) and (�a) are orthogonal, before
considering the general case. In such a case, the heavy
mass eigenstates are

Dc
1 = cos ✓ dc16 + sin ✓ ↵̂ad

c
16a , (A20)

Dc
2 = cos� dc10 + sin� �̂ad

c
16a , (A21)

the light dca components can be chosen to be

dc3 = � sin ✓ dc16 + cos ✓ ↵̂ad
c
16a , (A22)

dc2 = � sin� dc10 + cos� �̂ad
c
16a , (A23)

while dc1 is entirely contained in the 16a. The projection
of the 10 and 16 fields on the light dc-like states then
reads

dc16 ! � sin ✓ dc3 , (A24)
dc10 ! � sin� dc2 . (A25)

The only renormalizable (RPV) interaction generated by
the operator � 161610 (cf. Eq. (13)) is therefore

2� sin2 ✓ sin�uc
3d

c
3d

c
2 . (A26)

In the opposite case in which ↵a and �a are parallel,
both dc16 and dc10 contain only one linear combination of
the light fields and the baryon number violating RPV
operator would vanish by antisymmetry.

Let us now consider the general case. In order to iden-
tify the light dc eigenstates, it is useful to consider a basis
in the SO(10) flavour space in which �1 = 0, ↵1,2 = 0, so
that (↵a) = (0, 0,↵3), ↵3 > 0, (�a) = (0,�2,�3), ↵ = ↵3,
� = (�2

2 + �2
3)

1/2. In such a basis, one of the three light
eigenstates is dc1 and the other two are linear combina-
tions of dc162 , d

c
163 , d

c
16, d

c
10 orthogonal to the heavy linear

combinations (linearly independent but not orthogonal
nor normalized)

Dc
1 = ↵V45d

c
163 +M16d

c
16 (A27)

Dc
2 = V16(�3d

c
163 + �2d

c
162) +M10d

c
10 . (A28)

A possible choice of the light fields is given by the exterior
products

dc2 = (Dc
1 ^Dc

2 ^ dc163)/N2 (A29)
dc3 = (Dc

1 ^Dc
2 ^ dc2)/N3 , (A30)

where N2 and N3 are normalization factors. The explicit
expressions are

dc2 =
dc162 � �̂2t� dc10

(1 + (�̂2t�)2)1/2
(A31)

dc3 =
(1 + (�̂2t�)2)(dc163 � t✓dc16)� �̂3t�(�̂2t�dc162 + dc10)

(1 + (�̂2t�)2)1/2(1 + t2✓ + t2� + �̂2
2t

2
�t

2
✓)

1/2
,

(A32)

from which we get

�16 16 10 = heavy+

2�↵̂[3�̂2]s✓t✓t�

(1 + t2✓ + t2� + (1� (↵̂ · �̂)2)t2�t2✓)1/2
uc
3d

c
3d

c
2. (A33)

The coe�cient of the RPV operator in the previous ex-
pression is independent of the choice of the two light
fields dc3, dc2 made in Eqs. (A29)–(A30), provided that
dc3, d

c
2 are orthonormal and orthogonal to dc161 , D

c
1, D

c
2.

The form in which it is written is independent of the ba-
sis in which the vectors (↵a) and (�a) are written, as long
as ↵1 = �1 = 0.

In the t2✓ ⌧ 1 ⌧ t2� limit identified in Sect. IVA the
coe�cient of the RPV operator becomes

2�s✓t✓↵̂[3�̂2] ⇡ 2�
V 2
45↵

2

M2
16

↵̂[3�̂2] . (A34)

We remind that Eq. (A33) should be written in terms of
the fermion mass eigenstates, which are determined by
the SM Yukawas after electroweak symmetry breaking.
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Let us leave aside for a while the dc-like states and focus
on the others. From Eqs. (A3)–(A6) one can readily find
the heavy (GUT-scale) mass eigenstates

L1 = l16 , (A7)

L2 = cos� l10 + sin� �̂al16a , (A8)

U c = cos ✓ uc
16 � sin ✓ ↵̂au

c
16a , (A9)

Ec = cos ✓ ec16 + sin ✓ ↵̂ae
c
16a , (A10)

Q = q16 , (A11)

where we defined the quantities tan ✓ ⌘ V45↵/M16 and
tan� ⌘ V16�/M10, and the normalized vectors ↵̂a ⌘
↵a/↵ and �̂a ⌘ �a/�, with ↵ ⌘ pP

a ↵
2
a and � ⌘pP

a �
2
a. The light MSSM components la, uc

a, eca, qa
(a = 1, 2, 3), can be identified with the linear combina-
tions orthogonal to those in Eqs. (A7)–(A11). A possible
choice is

l3 = � sin� l10 + cos� �̂al16a (A12)
uc
3 = sin ✓ uc

16 + cos ✓ ↵̂au
c
16a , (A13)

ec3 = � sin ✓ ec16 + cos ✓ ↵̂ae
c
16a , (A14)

while the remaining light components components: lm,
uc
m, ecm (m = 1, 2) and qa (a = 1, 2, 3) are only contained

in the 16a. In particular, we are interested in the pro-
jection of the 10 and 16 fields on the light eigenstates.
Inverting the transformations in Eqs. (A7)–(A14) we get

l10 ! � sin� l3 , (A15)
l16 ! 0 , (A16)
uc
16 ! sin ✓ uc

3 , (A17)
ec16 ! � sin ✓ ec3 , (A18)
q16 ! 0 . (A19)

The identification of the dc-like light states is more in-
volved. Therefore, let us first consider the simple limit
in which the vectors (↵a) and (�a) are orthogonal, before
considering the general case. In such a case, the heavy
mass eigenstates are

Dc
1 = cos ✓ dc16 + sin ✓ ↵̂ad

c
16a , (A20)
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2 = cos� dc10 + sin� �̂ad
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16a , (A21)

the light dca components can be chosen to be

dc3 = � sin ✓ dc16 + cos ✓ ↵̂ad
c
16a , (A22)

dc2 = � sin� dc10 + cos� �̂ad
c
16a , (A23)

while dc1 is entirely contained in the 16a. The projection
of the 10 and 16 fields on the light dc-like states then
reads

dc16 ! � sin ✓ dc3 , (A24)
dc10 ! � sin� dc2 . (A25)

The only renormalizable (RPV) interaction generated by
the operator � 161610 (cf. Eq. (13)) is therefore
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2 . (A26)

In the opposite case in which ↵a and �a are parallel,
both dc16 and dc10 contain only one linear combination of
the light fields and the baryon number violating RPV
operator would vanish by antisymmetry.

Let us now consider the general case. In order to iden-
tify the light dc eigenstates, it is useful to consider a basis
in the SO(10) flavour space in which �1 = 0, ↵1,2 = 0, so
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from which we get
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The coe�cient of the RPV operator in the previous ex-
pression is independent of the choice of the two light
fields dc3, dc2 made in Eqs. (A29)–(A30), provided that
dc3, d

c
2 are orthonormal and orthogonal to dc161 , D
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1, D

c
2.

The form in which it is written is independent of the ba-
sis in which the vectors (↵a) and (�a) are written, as long
as ↵1 = �1 = 0.
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We remind that Eq. (A33) should be written in terms of
the fermion mass eigenstates, which are determined by
the SM Yukawas after electroweak symmetry breaking.
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The coe�cient of the RPV operator in the previous ex-
pression is independent of the choice of the two light
fields dc3, dc2 made in Eqs. (A29)–(A30), provided that
dc3, d
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2 are orthonormal and orthogonal to dc161 , D
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The form in which it is written is independent of the ba-
sis in which the vectors (↵a) and (�a) are written, as long
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In the t2✓ ⌧ 1 ⌧ t2� limit identified in Sect. IVA the
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We remind that Eq. (A33) should be written in terms of
the fermion mass eigenstates, which are determined by
the SM Yukawas after electroweak symmetry breaking.
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• Away from the dec. limit one has to inspect the mass matrices
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V45TB�L in the TB�L direction. On top of the three
16a needed to reproduce the SM chiral field content, the
“matter” content involves a 10 and three 10a, a = 1, 2, 3.
The minimal matter content relevant to our goal is then

16a, 10a, 10 45H , 16H , 16H . (11)

The possible sources of the RPV operator uc
id

c
jd

c
k are

16a16b10, 16a16b10c. The latter generically also gener-
ates lepton number violating operators, unless a specific
flavour structure is specified. Let us then consider the
following superpotential involving the former:

W3 = �ab16a16b10 + ↵a10 45H10a
+ ↵ab10a45H10b + hab16H16a10b. (12)

The light fields qa, uc
a, e

c
a are only contained in the 16a.

The operator hab16H16a10b forces the light lepton dou-
blets la to lie in the 10a only, whereas the light dci are both
in the 10a, the 16a, and the 10 because of the mixing in-
duced by ↵a10 45H10a and ↵ab10a45H10b (note that the
second one is necessary otherwise only a single light com-
ponent would appear in both 16a and 10 and �00

ijk would
vanish because of the antisymmetry). Only the lepton
number conserving RPV operator is thus generated.

The embedding of the la and part of the dca in the
10a, forced by the operator hab16H16a10b allows to ob-
tain positive, universal sfermion masses at the tree level,
if supersymmetry is broken by the vev of a 16 [64–68].
In this context, the presence of three 16a � 10a can be
associated to a further stage of unification in E6 [69].
The embedding through 16a � 10a also allows to obtain
a predictive framework for leptogenesis [70, 71].

The doublet-triplet splitting in the Higgs sector could
be in principle obtained for free. Indeed, the doublets
in the 10 are also light and could play the role of the
Higgs doublets. The up Yukawa interactions would in
this case provided by the very same operator generating
�00
ijk. However, no lepton Yukawa would be generated.

Therefore, we need to add again an additional 10H to
accommodate the light Higgs fields and make the dou-
blets in the 10 heavy by adding a M10102 mass term.

Adding the term �abc16a16b10c or mass terms in the
form Mab10a10b or Ma10a10 would introduce lepton
number violation. All other terms involving two matter
fields are allowed.

C. On the naturalness of the superpotential

A comment on the flavour structure of the superpo-
tential in Eq. (9) is in order. We achieved our goal of
generating an isolated baryonic RPV operator without
invoking a special structure with respect to the flavour in-
dex a = 1, 2, 3. On the other hand, we implicitely distin-
guished the three 16a from the 16H and 16. For example,
we assumed 16H16a10 to be present in the superpoten-
tial in Eq. (9), while 16a16b10 is not. The question then
arises whether it is possible to find a symmetry forcing

the superpotential to have the desired form. The an-
swer to this question depends on the form of WH , which
constrains the quantum numbers of 16H , 16H , 45H . Let
us consider for example the case in which WH contains
the terms M45452H and X(16H16H � V 2

16), where X is
an SO(10) singlet, as e.g. in [50, 65]. In such a case, it
turns out that it is not possible to find a symmetry that
allows all the terms we need and forbids the ones that
should not appear. In particular, it is not possible to find
any symmetry that distinguishes the fields 16H and 16a.4

Nonetheless, the structure of the superpotential we need
can be justified at a more fundamental level, once the
origin of the flavour structure of the superpotential (and
of the SM fermions) is addressed. For instance, one could
envisage the presence of an SU(3)H horizontal symmetry
under which the 16a transforms as the fundamental of
SU(3)H , while the 16H transforms trivially. The flavor
symmetry is then formally restored in the superpotential
considering the various couplings as spurions. We will
illustrate this point in more detail in Sect. IVA.

IV. ANALYSIS OF A SIMPLE MODEL

In this section we study in greater detail the first model
of Sect. III A. To this end we consider the superpotential
in Eq. (9) augmented with a mass term for the 10, namely

WRPV = �16 16 10 + ↵a16 45H16a

+ �a16H16a10 +M161616 +
M10

2
10 10 , (13)

where the adjoint gets a vev along the 3R generator. For
simplicity, we will assume in what follows all the para-
meters to be real.

The M10 mass term does not change the conclusions
of Sect. III A and it allows to derive a limit where the
expression of �00

ijk assumes a simple form in terms of the
superpotential parameters of Eq. (13). Let us consider,
indeed, the limit in which the extra vector-like states
10� 16� 16 are much heavier than the the GUT vevs,

M10,M16 � V16, V45. (14)

In such a case the light MSSM superfields are mostly
contained (up to V/M corrections) in the 16a and one
can integrate out the heavy fields 10, 16 and 16 at the
SO(10) level, thus obtaining at the leading order in 1/M

10 ⇡ � 1

M10
(�a16H16a)10 , (15)

16 ⇡ � 1

M16
(↵a45H16a)16 , (16)

4 On the other hand, is it possible to find a Z2 symmetry which dis-
criminates 16 from 16H and 16a (and 16 from 16H as well). An
explicit example being: Z2(45H , 10, 16a, 16, 16H , 16, 16H , X) =
(�,+,+,�,+,�,+,+).
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low-energy correlations among the RPV couplings. For
instance, we find that the following relations

�00
ids

�00
jds

=
�00
idb

�00
jdb

=
�00
isb

�00
jsb

, (59)

must be satisfied for i, j = u, c, t. However, the rela-
tions in Eq. (59) are irrelevant when crossed with the
low-energy bounds in Eqs. (49)–(56) whenever the abso-
lute size of �00 is smaller than O(10�5).

The absolute size of �00 predicted by the GUT model
is in general model dependent. Interestingly, in the case
of a hierarchy such as the one in Eq. (41) or Eq. (14), the
value for the couplings �00 can be expected to lie in the
10�7 . �00 . 10�5 window mentioned above, which sat-
isfies all the low-energy bounds. Upper bounds coming
from the requirement of not washing out a pre-existing
baryon asymmetry generated above the EW scale turn
out to give �00 < 3 · 10�7 for sfermion masses of about 1
TeV [75].

In the presence of additional assumption on a common
origin of the flavour structure of both the SM fermions
and the RPV couplings, the RPV couplings also show
a hierarchical pattern, as illustrated by the example in
Sect. IVA. A simple consequence is that a stop will decay
predominantly into t̃ ! bs.

VI. SUMMARY

Supersymmetric models with R-parity violation have
the potential to relieve some of the pressure on the natu-
ralness of supersymmetric extensions of the SM that fol-
lows the negative results so far of searches at the LHC.
This is welcome, as providing a natural framework for
electroweak symmetry breaking is one of the main phe-
nomenological motivations of supersymmetry. On the
other hand, this requires baryon number violating RPV
operators not to be accompanied by lepton number vi-
olating ones, which in turn may seem to require giving
up another important phenomenological motivation: the
possibility to explain the SM fermion gauge quantum
numbers within a grand unified framework leading to
a successful prediction for the unification of gauge cou-
plings. We have shown that this is not the case. Dimen-
sion four lepton number violating interactions can vanish
despite the presence of sizeable baryon number violating
interactions and the existence of a grand unified gauge
symmetry relating baryon and leptons in models in which
the necessary sources of GUT-breaking split the unified
multiplets and additional vector-like matter is added to
the MSSM chiral content.

In particular, we have shown that this can be achieved
without fine-tuning or the need of large representations
in simple renormalizable SO(10) models in which the ad-
joint vev is aligned along the 3R or B-L generators. In
this context, it is also possible to relate the size of bary-
onic R-parity violation to the origin of the SM fermion

mass hierarchy and to the success (to some extent) of
unified relations among third family fermion masses.
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Appendix A: Details of the model in Sect. IV

In this appendix we illustrate the details of the anal-
ysis of the model specified by Eq. (13) and Eq. (20) of
Sect. IV. In order to identify the light MSSM components
populating the SO(10) fields 16a, 16, and 10, one has to
inspect the mass matrices stemming from Eq. (13) upon
SO(10)-symmetry breaking. In particular, the piece of
superpotential responsible for the non-pure embedding of
the MSSM degrees of freedom into the relevant SO(10)
representations reads

W � ↵a16 45H16a + �a16H16a10

+M161616 +
M10

2
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where the Higgs superfields 45H and 16H are assumed to
pick up a GUT-scale vev h45Hi = V45T3R and h16Hi =
V16, along the SU(4)PS ⌦ SU(2)L ⌦ U(1)R and SU(5)
invariant directions respectively.

The mechanism we are going to consider is based on
the fact that the 45H vev picks up the SU(2)L singlet
components of 16a and the vev of the 16H picks up the
516a and 510 SU(5) components of 16a and 10. Hence,
upon SO(10)-symmetry breaking, Eq. (A1) leads to the
following mass matrices involving the MSSM-like degrees
of freedom:
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Appendix A: Details of the model in Sect. IV

In this appendix we illustrate the details of the anal-
ysis of the model specified by Eq. (13) and Eq. (20) of
Sect. IV. In order to identify the light MSSM components
populating the SO(10) fields 16a, 16, and 10, one has to
inspect the mass matrices stemming from Eq. (13) upon
SO(10)-symmetry breaking. In particular, the piece of
superpotential responsible for the non-pure embedding of
the MSSM degrees of freedom into the relevant SO(10)
representations reads
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where the Higgs superfields 45H and 16H are assumed to
pick up a GUT-scale vev h45Hi = V45T3R and h16Hi =
V16, along the SU(4)PS ⌦ SU(2)L ⌦ U(1)R and SU(5)
invariant directions respectively.

The mechanism we are going to consider is based on
the fact that the 45H vev picks up the SU(2)L singlet
components of 16a and the vev of the 16H picks up the
516a and 510 SU(5) components of 16a and 10. Hence,
upon SO(10)-symmetry breaking, Eq. (A1) leads to the
following mass matrices involving the MSSM-like degrees
of freedom:
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Let us leave aside for a while the dc-like states and focus
on the others. From Eqs. (A3)–(A6) one can readily find
the heavy (GUT-scale) mass eigenstates

L1 = l16 , (A7)

L2 = cos� l10 + sin� �̂al16a , (A8)

U c = cos ✓ uc
16 � sin ✓ ↵̂au

c
16a , (A9)

Ec = cos ✓ ec16 + sin ✓ ↵̂ae
c
16a , (A10)

Q = q16 , (A11)

where we defined the quantities tan ✓ ⌘ V45↵/M16 and
tan� ⌘ V16�/M10, and the normalized vectors ↵̂a ⌘
↵a/↵ and �̂a ⌘ �a/�, with ↵ ⌘ pP

a ↵
2
a and � ⌘pP

a �
2
a. The light MSSM components la, uc

a, eca, qa
(a = 1, 2, 3), can be identified with the linear combina-
tions orthogonal to those in Eqs. (A7)–(A11). A possible
choice is

l3 = � sin� l10 + cos� �̂al16a (A12)
uc
3 = sin ✓ uc

16 + cos ✓ ↵̂au
c
16a , (A13)

ec3 = � sin ✓ ec16 + cos ✓ ↵̂ae
c
16a , (A14)

while the remaining light components components: lm,
uc
m, ecm (m = 1, 2) and qa (a = 1, 2, 3) are only contained

in the 16a. In particular, we are interested in the pro-
jection of the 10 and 16 fields on the light eigenstates.
Inverting the transformations in Eqs. (A7)–(A14) we get

l10 ! � sin� l3 , (A15)
l16 ! 0 , (A16)
uc
16 ! sin ✓ uc

3 , (A17)
ec16 ! � sin ✓ ec3 , (A18)
q16 ! 0 . (A19)

The identification of the dc-like light states is more in-
volved. Therefore, let us first consider the simple limit
in which the vectors (↵a) and (�a) are orthogonal, before
considering the general case. In such a case, the heavy
mass eigenstates are

Dc
1 = cos ✓ dc16 + sin ✓ ↵̂ad

c
16a , (A20)

Dc
2 = cos� dc10 + sin� �̂ad

c
16a , (A21)

the light dca components can be chosen to be

dc3 = � sin ✓ dc16 + cos ✓ ↵̂ad
c
16a , (A22)

dc2 = � sin� dc10 + cos� �̂ad
c
16a , (A23)

while dc1 is entirely contained in the 16a. The projection
of the 10 and 16 fields on the light dc-like states then
reads

dc16 ! � sin ✓ dc3 , (A24)
dc10 ! � sin� dc2 . (A25)

The only renormalizable (RPV) interaction generated by
the operator � 161610 (cf. Eq. (13)) is therefore

2� sin2 ✓ sin�uc
3d

c
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c
2 . (A26)

In the opposite case in which ↵a and �a are parallel,
both dc16 and dc10 contain only one linear combination of
the light fields and the baryon number violating RPV
operator would vanish by antisymmetry.

Let us now consider the general case. In order to iden-
tify the light dc eigenstates, it is useful to consider a basis
in the SO(10) flavour space in which �1 = 0, ↵1,2 = 0, so
that (↵a) = (0, 0,↵3), ↵3 > 0, (�a) = (0,�2,�3), ↵ = ↵3,
� = (�2

2 + �2
3)

1/2. In such a basis, one of the three light
eigenstates is dc1 and the other two are linear combina-
tions of dc162 , d

c
163 , d

c
16, d

c
10 orthogonal to the heavy linear

combinations (linearly independent but not orthogonal
nor normalized)
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A possible choice of the light fields is given by the exterior
products

dc2 = (Dc
1 ^Dc

2 ^ dc163)/N2 (A29)
dc3 = (Dc

1 ^Dc
2 ^ dc2)/N3 , (A30)

where N2 and N3 are normalization factors. The explicit
expressions are

dc2 =
dc162 � �̂2t� dc10

(1 + (�̂2t�)2)1/2
(A31)

dc3 =
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from which we get

�16 16 10 = heavy+

2�↵̂[3�̂2]s✓t✓t�

(1 + t2✓ + t2� + (1� (↵̂ · �̂)2)t2�t2✓)1/2
uc
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The coe�cient of the RPV operator in the previous ex-
pression is independent of the choice of the two light
fields dc3, dc2 made in Eqs. (A29)–(A30), provided that
dc3, d

c
2 are orthonormal and orthogonal to dc161 , D

c
1, D

c
2.

The form in which it is written is independent of the ba-
sis in which the vectors (↵a) and (�a) are written, as long
as ↵1 = �1 = 0.

In the t2✓ ⌧ 1 ⌧ t2� limit identified in Sect. IVA the
coe�cient of the RPV operator becomes

2�s✓t✓↵̂[3�̂2] ⇡ 2�
V 2
45↵

2

M2
16

↵̂[3�̂2] . (A34)

We remind that Eq. (A33) should be written in terms of
the fermion mass eigenstates, which are determined by
the SM Yukawas after electroweak symmetry breaking.
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the fermion mass eigenstates, which are determined by
the SM Yukawas after electroweak symmetry breaking.
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expressions are

dc2 =
dc162 � �̂2t� dc10

(1 + (�̂2t�)2)1/2
(A31)

dc3 =
(1 + (�̂2t�)2)(dc163 � t✓dc16)� �̂3t�(�̂2t�dc162 + dc10)

(1 + (�̂2t�)2)1/2(1 + t2✓ + t2� + �̂2
2t

2
�t

2
✓)

1/2
,

(A32)

from which we get

�16 16 10 = heavy+

2�↵̂[3�̂2]s✓t✓t�

(1 + t2✓ + t2� + (1� (↵̂ · �̂)2)t2�t2✓)1/2
uc
3d

c
3d

c
2. (A33)

The coe�cient of the RPV operator in the previous ex-
pression is independent of the choice of the two light
fields dc3, dc2 made in Eqs. (A29)–(A30), provided that
dc3, d

c
2 are orthonormal and orthogonal to dc161 , D

c
1, D

c
2.

The form in which it is written is independent of the ba-
sis in which the vectors (↵a) and (�a) are written, as long
as ↵1 = �1 = 0.

In the t2✓ ⌧ 1 ⌧ t2� limit identified in Sect. IVA the
coe�cient of the RPV operator becomes

2�s✓t✓↵̂[3�̂2] ⇡ 2�
V 2
45↵

2

M2
16

↵̂[3�̂2] . (A34)

We remind that Eq. (A33) should be written in terms of
the fermion mass eigenstates, which are determined by
the SM Yukawas after electroweak symmetry breaking.

16 � dc
light + uc

light + ec
light

10 � dc
light + `light

8
><

>:

16! aiuc
i

16! bidc
i

10! cidc
i

�16 16 10 =) �00
ijk / ai (bjck � bkcj)

• Detailed flavour structure depends on the Yukawa sector
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• Assume gravitino (LSP) heavier than the proton

• Upper bounds from ∆B = 2 & flavour (                              ) m
soft

= O(500 GeV)

• Lower bounds from prompt decay (e.g. stop NLSP)

8

Vdc (cf. Eqs. (B9)–(B10) in Appendix B). This yields:

�00
tbs = 2� ✏

s✓t✓t�
(1 + t2✓ + t2�)

1/2
, (45)

�00
cbs = �✏

2y23
2c✓y33 + s✓y3

�00
tbs . (46)

The RPV couplings involving the first family vanish be-
cause, having introduced only two spurions, we have ne-
glected the structure associated to the first family masses.
Note also that the RPV coupling is proportional to the
small misalignment between the 3-vectors ↵a and �a, i.e.
Eqs. (45)–(45) vanish in the ✏ ! 0 limit. Eventually, we
obtain an hierarchical structure for the RPV couplings.
In the limit in Eq. (41), the expressions above simplify
to

�00
tbs = 2� ✏ t2✓ , (47)

�00
cbs = �✏

y23
y33

�00
tbs . (48)

The RPV couplings are therefore proportional to t2✓,
which is the same parameter that controls the deviation
of mb/m⌧ from 1 at the unification scale.

V. PHENOMENOLOGICAL REMARKS

The baryon number RPV interactions are subject to
stringent low-energy constraints coming mainly from pro-
ton decay, di-nucleon decay, n-n oscillations and flavour
violating observables. Rescaling the bounds in ref. [75]
for superpartners around 500 GeV and assuming a grav-
itino heavier than the proton (in order to evade the con-
straints from proton decay) but not too heavy (in order
not to enhance flavour-anarchical supergravity e↵ects)
one gets:7

|�00
uds| < O(10�5) [NN ! KK] , (49)

|�00
udb| < O(10�2) [n� n] , (50)

|�00
tds| < O(10�1) [n� n] , (51)

|�00
tdb| < O(10�1) [n� n] , (52)

and

|�00
cdb �

00
csb| < O(10�3) [K �K] , (53)

|�00
tdb �

00
tsb| < O(10�3) [K �K] , (54)

|�00
ids �

00
idb| < O(10�1) [B+ ! K0⇡+] , (55)

|�00
ids �

00
isb| < O(10�3) [B� ! �⇡�] , (56)

with i = u, c, t for the product of two RPV couplings.

7 The quoted bounds have a strong dependence on the spectrum of
the superpartners, and large uncertainties related to the flavour
structure of the soft terms and the hadronic matrix elements.
However, for the purposes of our discussion an order of magni-
tude estimate is su�cient (see e.g. [75] and references therein).

On the other hand, the RPV couplings cannot be too
small, if the SUSY searches based on the missing energy
signature are to be evaded. This is the case if the NLSP
(we assume the LSP to be the gravitino) has a prompt
decay corresponding to a decay length smaller than about
2 mm [28].8

This way supersymmetry can be “hidden” into QCD
backgrounds and the lower bounds on superpartners can
be relaxed with respect to the R-parity conserving case.

To illustrate this point, let us compare the current ex-
clusion limits from LHC in standard MSSM scenarios to
the case with bayonic RPV. In the case of the R-parity
conserving MSSM the present lower bounds on the stop
and gluino masses are respectively mt̃ & 700 GeV [76, 77]
and mg̃ & 1.3 TeV [78, 79].9 In the case of the simplified
squark-gluino-neutralino model one gets mg̃,mt̃ & 1.5
TeV (with only 5.8 fb�1 of integrated luminosity andp
s = 8 TeV) [80]. On the other hand, if we allow the

light colored s-particles (gluinos and squarks) to decay
promptly via the ucdcdc operator the bounds are much
less stringent. For instance, if the stop decays directly
into jets neither ATLAS nor CMS can currently place
significant limits on the stop mass [17, 81–83]. The de-
cay of the gluino can proceed either through g̃ ! t̃t (and
consequently t̃ ! bs for example) or directly into jets. In
the former case the bound on the gluino mass is 890 GeV
(with 20.7 fb�1 and

p
s = 8 TeV) [84], while in the latter

case 666 GeV (with 4.6 fb�1 and
p
s = 7 TeV) [85].

Let us quantify now the minimal amount of RPV
needed in order to have a prompt vertex. As a benchmark
scenario we consider the case of a right-handed squark
NLSP decaying into two SM fermions. In such a case the
decay length reads

L = 2mm(��)

✓
500 GeV

mq̃c

◆✓
0.9 · 10�7

�00

◆2

, (57)

where � is the velocity of the decaying particle and � is
the Lorentz boost factor. Hence, a decay length smaller
than about 2 mm, requires �00 > O(10�7). Therefore, a
RPV coupling in the range 10�7 . �00 . 10�5 would give
rise to a prompt decay, while also satisfying the bounds
in Eqs. (49)–(56) independent of its flavour numbers.10

Nevertheless, it is worth to mention that the flavour
structure of the GUT-induced �00

ijk which emerges from
Eq. (19) is of the type

�00
ijk / ↵i�[j�k] , (58)

where ↵i, �j and �k are independent 3-vectors in the
flavour space. This non-generic structure implies a set of

8 Larger decay lengths give rise to displaced vertices which require
dedicated analysis. See for instance [10, 44].

9 These conservative bounds apply in the case of a light neutralino
and away from the kinematical configuration mt̃ ⇡ mt +m�.

10 There could be cases where a larger �00 is needed for a prompt
decay. For example in the case of a gluino decaying in the kine-
matical configuration mg̃ ⇡ mt +mt̃ [10].

•                          does the job independently of the flavour structure 

8

Vdc (cf. Eqs. (B9)–(B10) in Appendix B). This yields:

�00
tbs = 2� ✏

s✓t✓t�
(1 + t2✓ + t2�)

1/2
, (45)

�00
cbs = �✏

2y23
2c✓y33 + s✓y3

�00
tbs . (46)

The RPV couplings involving the first family vanish be-
cause, having introduced only two spurions, we have ne-
glected the structure associated to the first family masses.
Note also that the RPV coupling is proportional to the
small misalignment between the 3-vectors ↵a and �a, i.e.
Eqs. (45)–(45) vanish in the ✏ ! 0 limit. Eventually, we
obtain an hierarchical structure for the RPV couplings.
In the limit in Eq. (41), the expressions above simplify
to

�00
tbs = 2� ✏ t2✓ , (47)

�00
cbs = �✏

y23
y33

�00
tbs . (48)

The RPV couplings are therefore proportional to t2✓,
which is the same parameter that controls the deviation
of mb/m⌧ from 1 at the unification scale.

V. PHENOMENOLOGICAL REMARKS

The baryon number RPV interactions are subject to
stringent low-energy constraints coming mainly from pro-
ton decay, di-nucleon decay, n-n oscillations and flavour
violating observables. Rescaling the bounds in ref. [75]
for superpartners around 500 GeV and assuming a grav-
itino heavier than the proton (in order to evade the con-
straints from proton decay) but not too heavy (in order
not to enhance flavour-anarchical supergravity e↵ects)
one gets:7

|�00
uds| < O(10�5) [NN ! KK] , (49)

|�00
udb| < O(10�2) [n� n] , (50)

|�00
tds| < O(10�1) [n� n] , (51)

|�00
tdb| < O(10�1) [n� n] , (52)

and

|�00
cdb �

00
csb| < O(10�3) [K �K] , (53)

|�00
tdb �

00
tsb| < O(10�3) [K �K] , (54)

|�00
ids �

00
idb| < O(10�1) [B+ ! K0⇡+] , (55)

|�00
ids �

00
isb| < O(10�3) [B� ! �⇡�] , (56)

with i = u, c, t for the product of two RPV couplings.

7 The quoted bounds have a strong dependence on the spectrum of
the superpartners, and large uncertainties related to the flavour
structure of the soft terms and the hadronic matrix elements.
However, for the purposes of our discussion an order of magni-
tude estimate is su�cient (see e.g. [75] and references therein).

On the other hand, the RPV couplings cannot be too
small, if the SUSY searches based on the missing energy
signature are to be evaded. This is the case if the NLSP
(we assume the LSP to be the gravitino) has a prompt
decay corresponding to a decay length smaller than about
2 mm [28].8

This way supersymmetry can be “hidden” into QCD
backgrounds and the lower bounds on superpartners can
be relaxed with respect to the R-parity conserving case.

To illustrate this point, let us compare the current ex-
clusion limits from LHC in standard MSSM scenarios to
the case with bayonic RPV. In the case of the R-parity
conserving MSSM the present lower bounds on the stop
and gluino masses are respectively mt̃ & 700 GeV [76, 77]
and mg̃ & 1.3 TeV [78, 79].9 In the case of the simplified
squark-gluino-neutralino model one gets mg̃,mt̃ & 1.5
TeV (with only 5.8 fb�1 of integrated luminosity andp
s = 8 TeV) [80]. On the other hand, if we allow the

light colored s-particles (gluinos and squarks) to decay
promptly via the ucdcdc operator the bounds are much
less stringent. For instance, if the stop decays directly
into jets neither ATLAS nor CMS can currently place
significant limits on the stop mass [17, 81–83]. The de-
cay of the gluino can proceed either through g̃ ! t̃t (and
consequently t̃ ! bs for example) or directly into jets. In
the former case the bound on the gluino mass is 890 GeV
(with 20.7 fb�1 and

p
s = 8 TeV) [84], while in the latter

case 666 GeV (with 4.6 fb�1 and
p
s = 7 TeV) [85].

Let us quantify now the minimal amount of RPV
needed in order to have a prompt vertex. As a benchmark
scenario we consider the case of a right-handed squark
NLSP decaying into two SM fermions. In such a case the
decay length reads

L = 2mm(��)

✓
500 GeV

mq̃c

◆✓
0.9 · 10�7

�00

◆2

, (57)

where � is the velocity of the decaying particle and � is
the Lorentz boost factor. Hence, a decay length smaller
than about 2 mm, requires �00 > O(10�7). Therefore, a
RPV coupling in the range 10�7 . �00 . 10�5 would give
rise to a prompt decay, while also satisfying the bounds
in Eqs. (49)–(56) independent of its flavour numbers.10

Nevertheless, it is worth to mention that the flavour
structure of the GUT-induced �00

ijk which emerges from
Eq. (19) is of the type

�00
ijk / ↵i�[j�k] , (58)

where ↵i, �j and �k are independent 3-vectors in the
flavour space. This non-generic structure implies a set of

8 Larger decay lengths give rise to displaced vertices which require
dedicated analysis. See for instance [10, 44].

9 These conservative bounds apply in the case of a light neutralino
and away from the kinematical configuration mt̃ ⇡ mt +m�.

10 There could be cases where a larger �00 is needed for a prompt
decay. For example in the case of a gluino decaying in the kine-
matical configuration mg̃ ⇡ mt +mt̃ [10].

8

Vdc (cf. Eqs. (B9)–(B10) in Appendix B). This yields:

�00
tbs = 2� ✏

s✓t✓t�
(1 + t2✓ + t2�)

1/2
, (45)

�00
cbs = �✏

2y23
2c✓y33 + s✓y3

�00
tbs . (46)

The RPV couplings involving the first family vanish be-
cause, having introduced only two spurions, we have ne-
glected the structure associated to the first family masses.
Note also that the RPV coupling is proportional to the
small misalignment between the 3-vectors ↵a and �a, i.e.
Eqs. (45)–(45) vanish in the ✏ ! 0 limit. Eventually, we
obtain an hierarchical structure for the RPV couplings.
In the limit in Eq. (41), the expressions above simplify
to

�00
tbs = 2� ✏ t2✓ , (47)

�00
cbs = �✏

y23
y33

�00
tbs . (48)

The RPV couplings are therefore proportional to t2✓,
which is the same parameter that controls the deviation
of mb/m⌧ from 1 at the unification scale.

V. PHENOMENOLOGICAL REMARKS

The baryon number RPV interactions are subject to
stringent low-energy constraints coming mainly from pro-
ton decay, di-nucleon decay, n-n oscillations and flavour
violating observables. Rescaling the bounds in ref. [75]
for superpartners around 500 GeV and assuming a grav-
itino heavier than the proton (in order to evade the con-
straints from proton decay) but not too heavy (in order
not to enhance flavour-anarchical supergravity e↵ects)
one gets:7

|�00
uds| < O(10�5) [NN ! KK] , (49)

|�00
udb| < O(10�2) [n� n] , (50)

|�00
tds| < O(10�1) [n� n] , (51)

|�00
tdb| < O(10�1) [n� n] , (52)

and

|�00
cdb �

00
csb| < O(10�3) [K �K] , (53)

|�00
tdb �

00
tsb| < O(10�3) [K �K] , (54)

|�00
ids �

00
idb| < O(10�1) [B+ ! K0⇡+] , (55)

|�00
ids �

00
isb| < O(10�3) [B� ! �⇡�] , (56)

with i = u, c, t for the product of two RPV couplings.

7 The quoted bounds have a strong dependence on the spectrum of
the superpartners, and large uncertainties related to the flavour
structure of the soft terms and the hadronic matrix elements.
However, for the purposes of our discussion an order of magni-
tude estimate is su�cient (see e.g. [75] and references therein).

On the other hand, the RPV couplings cannot be too
small, if the SUSY searches based on the missing energy
signature are to be evaded. This is the case if the NLSP
(we assume the LSP to be the gravitino) has a prompt
decay corresponding to a decay length smaller than about
2 mm [28].8

This way supersymmetry can be “hidden” into QCD
backgrounds and the lower bounds on superpartners can
be relaxed with respect to the R-parity conserving case.

To illustrate this point, let us compare the current ex-
clusion limits from LHC in standard MSSM scenarios to
the case with bayonic RPV. In the case of the R-parity
conserving MSSM the present lower bounds on the stop
and gluino masses are respectively mt̃ & 700 GeV [76, 77]
and mg̃ & 1.3 TeV [78, 79].9 In the case of the simplified
squark-gluino-neutralino model one gets mg̃,mt̃ & 1.5
TeV (with only 5.8 fb�1 of integrated luminosity andp
s = 8 TeV) [80]. On the other hand, if we allow the

light colored s-particles (gluinos and squarks) to decay
promptly via the ucdcdc operator the bounds are much
less stringent. For instance, if the stop decays directly
into jets neither ATLAS nor CMS can currently place
significant limits on the stop mass [17, 81–83]. The de-
cay of the gluino can proceed either through g̃ ! t̃t (and
consequently t̃ ! bs for example) or directly into jets. In
the former case the bound on the gluino mass is 890 GeV
(with 20.7 fb�1 and

p
s = 8 TeV) [84], while in the latter

case 666 GeV (with 4.6 fb�1 and
p
s = 7 TeV) [85].

Let us quantify now the minimal amount of RPV
needed in order to have a prompt vertex. As a benchmark
scenario we consider the case of a right-handed squark
NLSP decaying into two SM fermions. In such a case the
decay length reads

L = 2mm(��)

✓
500 GeV

mq̃c

◆✓
0.9 · 10�7

�00

◆2

, (57)

where � is the velocity of the decaying particle and � is
the Lorentz boost factor. Hence, a decay length smaller
than about 2 mm, requires �00 > O(10�7). Therefore, a
RPV coupling in the range 10�7 . �00 . 10�5 would give
rise to a prompt decay, while also satisfying the bounds
in Eqs. (49)–(56) independent of its flavour numbers.10

Nevertheless, it is worth to mention that the flavour
structure of the GUT-induced �00

ijk which emerges from
Eq. (19) is of the type

�00
ijk / ↵i�[j�k] , (58)

where ↵i, �j and �k are independent 3-vectors in the
flavour space. This non-generic structure implies a set of

8 Larger decay lengths give rise to displaced vertices which require
dedicated analysis. See for instance [10, 44].

9 These conservative bounds apply in the case of a light neutralino
and away from the kinematical configuration mt̃ ⇡ mt +m�.

10 There could be cases where a larger �00 is needed for a prompt
decay. For example in the case of a gluino decaying in the kine-
matical configuration mg̃ ⇡ mt +mt̃ [10].

8

Vdc (cf. Eqs. (B9)–(B10) in Appendix B). This yields:

�00
tbs = 2� ✏

s✓t✓t�
(1 + t2✓ + t2�)

1/2
, (45)

�00
cbs = �✏

2y23
2c✓y33 + s✓y3

�00
tbs . (46)

The RPV couplings involving the first family vanish be-
cause, having introduced only two spurions, we have ne-
glected the structure associated to the first family masses.
Note also that the RPV coupling is proportional to the
small misalignment between the 3-vectors ↵a and �a, i.e.
Eqs. (45)–(45) vanish in the ✏ ! 0 limit. Eventually, we
obtain an hierarchical structure for the RPV couplings.
In the limit in Eq. (41), the expressions above simplify
to

�00
tbs = 2� ✏ t2✓ , (47)

�00
cbs = �✏

y23
y33

�00
tbs . (48)

The RPV couplings are therefore proportional to t2✓,
which is the same parameter that controls the deviation
of mb/m⌧ from 1 at the unification scale.

V. PHENOMENOLOGICAL REMARKS

The baryon number RPV interactions are subject to
stringent low-energy constraints coming mainly from pro-
ton decay, di-nucleon decay, n-n oscillations and flavour
violating observables. Rescaling the bounds in ref. [75]
for superpartners around 500 GeV and assuming a grav-
itino heavier than the proton (in order to evade the con-
straints from proton decay) but not too heavy (in order
not to enhance flavour-anarchical supergravity e↵ects)
one gets:7

|�00
uds| < O(10�5) [NN ! KK] , (49)

|�00
udb| < O(10�2) [n� n] , (50)

|�00
tds| < O(10�1) [n� n] , (51)

|�00
tdb| < O(10�1) [n� n] , (52)

and

|�00
cdb �

00
csb| < O(10�3) [K �K] , (53)

|�00
tdb �

00
tsb| < O(10�3) [K �K] , (54)

|�00
ids �

00
idb| < O(10�1) [B+ ! K0⇡+] , (55)

|�00
ids �

00
isb| < O(10�3) [B� ! �⇡�] , (56)

with i = u, c, t for the product of two RPV couplings.

7 The quoted bounds have a strong dependence on the spectrum of
the superpartners, and large uncertainties related to the flavour
structure of the soft terms and the hadronic matrix elements.
However, for the purposes of our discussion an order of magni-
tude estimate is su�cient (see e.g. [75] and references therein).

On the other hand, the RPV couplings cannot be too
small, if the SUSY searches based on the missing energy
signature are to be evaded. This is the case if the NLSP
(we assume the LSP to be the gravitino) has a prompt
decay corresponding to a decay length smaller than about
2 mm [28].8

This way supersymmetry can be “hidden” into QCD
backgrounds and the lower bounds on superpartners can
be relaxed with respect to the R-parity conserving case.

To illustrate this point, let us compare the current ex-
clusion limits from LHC in standard MSSM scenarios to
the case with bayonic RPV. In the case of the R-parity
conserving MSSM the present lower bounds on the stop
and gluino masses are respectively mt̃ & 700 GeV [76, 77]
and mg̃ & 1.3 TeV [78, 79].9 In the case of the simplified
squark-gluino-neutralino model one gets mg̃,mt̃ & 1.5
TeV (with only 5.8 fb�1 of integrated luminosity andp
s = 8 TeV) [80]. On the other hand, if we allow the

light colored s-particles (gluinos and squarks) to decay
promptly via the ucdcdc operator the bounds are much
less stringent. For instance, if the stop decays directly
into jets neither ATLAS nor CMS can currently place
significant limits on the stop mass [17, 81–83]. The de-
cay of the gluino can proceed either through g̃ ! t̃t (and
consequently t̃ ! bs for example) or directly into jets. In
the former case the bound on the gluino mass is 890 GeV
(with 20.7 fb�1 and

p
s = 8 TeV) [84], while in the latter

case 666 GeV (with 4.6 fb�1 and
p
s = 7 TeV) [85].

Let us quantify now the minimal amount of RPV
needed in order to have a prompt vertex. As a benchmark
scenario we consider the case of a right-handed squark
NLSP decaying into two SM fermions. In such a case the
decay length reads

L = 2mm(��)

✓
500 GeV

mq̃c

◆✓
0.9 · 10�7

�00

◆2

, (57)

where � is the velocity of the decaying particle and � is
the Lorentz boost factor. Hence, a decay length smaller
than about 2 mm, requires �00 > O(10�7). Therefore, a
RPV coupling in the range 10�7 . �00 . 10�5 would give
rise to a prompt decay, while also satisfying the bounds
in Eqs. (49)–(56) independent of its flavour numbers.10

Nevertheless, it is worth to mention that the flavour
structure of the GUT-induced �00

ijk which emerges from
Eq. (19) is of the type

�00
ijk / ↵i�[j�k] , (58)

where ↵i, �j and �k are independent 3-vectors in the
flavour space. This non-generic structure implies a set of

8 Larger decay lengths give rise to displaced vertices which require
dedicated analysis. See for instance [10, 44].

9 These conservative bounds apply in the case of a light neutralino
and away from the kinematical configuration mt̃ ⇡ mt +m�.

10 There could be cases where a larger �00 is needed for a prompt
decay. For example in the case of a gluino decaying in the kine-
matical configuration mg̃ ⇡ mt +mt̃ [10].
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• GUT correlations

• Hierarchical flavour pattern is predicted under assumptions

   - relevant when many couplings are at play

   - Natural to expect       as the dominant coupling�00
tbs

8

Vdc (cf. Eqs. (B9)–(B10) in Appendix B). This yields:

�00
tbs = 2� ✏

s✓t✓t�
(1 + t2✓ + t2�)

1/2
, (45)

�00
cbs = �✏

2y23
2c✓y33 + s✓y3

�00
tbs . (46)

The RPV couplings involving the first family vanish be-
cause, having introduced only two spurions, we have ne-
glected the structure associated to the first family masses.
Note also that the RPV coupling is proportional to the
small misalignment between the 3-vectors ↵a and �a, i.e.
Eqs. (45)–(45) vanish in the ✏ ! 0 limit. Eventually, we
obtain an hierarchical structure for the RPV couplings.
In the limit in Eq. (41), the expressions above simplify
to

�00
tbs = 2� ✏ t2✓ , (47)

�00
cbs = �✏

y23
y33

�00
tbs . (48)

The RPV couplings are therefore proportional to t2✓,
which is the same parameter that controls the deviation
of mb/m⌧ from 1 at the unification scale.

V. PHENOMENOLOGICAL REMARKS

The baryon number RPV interactions are subject to
stringent low-energy constraints coming mainly from pro-
ton decay, di-nucleon decay, n-n oscillations and flavour
violating observables. Rescaling the bounds in ref. [75]
for superpartners around 500 GeV and assuming a grav-
itino heavier than the proton (in order to evade the con-
straints from proton decay) but not too heavy (in order
not to enhance flavour-anarchical supergravity e↵ects)
one gets:7

|�00
uds| < O(10�5) [NN ! KK] , (49)

|�00
udb| < O(10�2) [n� n] , (50)

|�00
tds| < O(10�1) [n� n] , (51)

|�00
tdb| < O(10�1) [n� n] , (52)

and

|�00
cdb �

00
csb| < O(10�3) [K �K] , (53)

|�00
tdb �

00
tsb| < O(10�3) [K �K] , (54)

|�00
ids �

00
idb| < O(10�1) [B+ ! K0⇡+] , (55)

|�00
ids �

00
isb| < O(10�3) [B� ! �⇡�] , (56)

with i = u, c, t for the product of two RPV couplings.

7 The quoted bounds have a strong dependence on the spectrum of
the superpartners, and large uncertainties related to the flavour
structure of the soft terms and the hadronic matrix elements.
However, for the purposes of our discussion an order of magni-
tude estimate is su�cient (see e.g. [75] and references therein).

On the other hand, the RPV couplings cannot be too
small, if the SUSY searches based on the missing energy
signature are to be evaded. This is the case if the NLSP
(we assume the LSP to be the gravitino) has a prompt
decay corresponding to a decay length smaller than about
2 mm [28].8

This way supersymmetry can be “hidden” into QCD
backgrounds and the lower bounds on superpartners can
be relaxed with respect to the R-parity conserving case.

To illustrate this point, let us compare the current ex-
clusion limits from LHC in standard MSSM scenarios to
the case with bayonic RPV. In the case of the R-parity
conserving MSSM the present lower bounds on the stop
and gluino masses are respectively mt̃ & 700 GeV [76, 77]
and mg̃ & 1.3 TeV [78, 79].9 In the case of the simplified
squark-gluino-neutralino model one gets mg̃,mt̃ & 1.5
TeV (with only 5.8 fb�1 of integrated luminosity andp
s = 8 TeV) [80]. On the other hand, if we allow the

light colored s-particles (gluinos and squarks) to decay
promptly via the ucdcdc operator the bounds are much
less stringent. For instance, if the stop decays directly
into jets neither ATLAS nor CMS can currently place
significant limits on the stop mass [17, 81–83]. The de-
cay of the gluino can proceed either through g̃ ! t̃t (and
consequently t̃ ! bs for example) or directly into jets. In
the former case the bound on the gluino mass is 890 GeV
(with 20.7 fb�1 and

p
s = 8 TeV) [84], while in the latter

case 666 GeV (with 4.6 fb�1 and
p
s = 7 TeV) [85].

Let us quantify now the minimal amount of RPV
needed in order to have a prompt vertex. As a benchmark
scenario we consider the case of a right-handed squark
NLSP decaying into two SM fermions. In such a case the
decay length reads

L = 2mm(��)

✓
500 GeV

mq̃c

◆✓
0.9 · 10�7

�00

◆2

, (57)

where � is the velocity of the decaying particle and � is
the Lorentz boost factor. Hence, a decay length smaller
than about 2 mm, requires �00 > O(10�7). Therefore, a
RPV coupling in the range 10�7 . �00 . 10�5 would give
rise to a prompt decay, while also satisfying the bounds
in Eqs. (49)–(56) independent of its flavour numbers.10

Nevertheless, it is worth to mention that the flavour
structure of the GUT-induced �00

ijk which emerges from
Eq. (19) is of the type

�00
ijk / ↵i�[j�k] , (58)

where ↵i, �j and �k are independent 3-vectors in the
flavour space. This non-generic structure implies a set of

8 Larger decay lengths give rise to displaced vertices which require
dedicated analysis. See for instance [10, 44].

9 These conservative bounds apply in the case of a light neutralino
and away from the kinematical configuration mt̃ ⇡ mt +m�.

10 There could be cases where a larger �00 is needed for a prompt
decay. For example in the case of a gluino decaying in the kine-
matical configuration mg̃ ⇡ mt +mt̃ [10].
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low-energy correlations among the RPV couplings. For
instance, we find that the following relations

�00
ids

�00
jds

=
�00
idb

�00
jdb

=
�00
isb

�00
jsb

, (59)

must be satisfied for i, j = u, c, t. However, the rela-
tions in Eq. (59) are irrelevant when crossed with the
low-energy bounds in Eqs. (49)–(56) whenever the abso-
lute size of �00 is smaller than O(10�5).

The absolute size of �00 predicted by the GUT model
is in general model dependent. Interestingly, in the case
of a hierarchy such as the one in Eq. (41) or Eq. (14), the
value for the couplings �00 can be expected to lie in the
10�7 . �00 . 10�5 window mentioned above, which sat-
isfies all the low-energy bounds. Upper bounds coming
from the requirement of not washing out a pre-existing
baryon asymmetry generated above the EW scale turn
out to give �00 < 3 · 10�7 for sfermion masses of about 1
TeV [75].

In the presence of additional assumption on a common
origin of the flavour structure of both the SM fermions
and the RPV couplings, the RPV couplings also show
a hierarchical pattern, as illustrated by the example in
Sect. IVA. A simple consequence is that a stop will decay
predominantly into t̃ ! bs.

VI. SUMMARY

Supersymmetric models with R-parity violation have
the potential to relieve some of the pressure on the natu-
ralness of supersymmetric extensions of the SM that fol-
lows the negative results so far of searches at the LHC.
This is welcome, as providing a natural framework for
electroweak symmetry breaking is one of the main phe-
nomenological motivations of supersymmetry. On the
other hand, this requires baryon number violating RPV
operators not to be accompanied by lepton number vi-
olating ones, which in turn may seem to require giving
up another important phenomenological motivation: the
possibility to explain the SM fermion gauge quantum
numbers within a grand unified framework leading to
a successful prediction for the unification of gauge cou-
plings. We have shown that this is not the case. Dimen-
sion four lepton number violating interactions can vanish
despite the presence of sizeable baryon number violating
interactions and the existence of a grand unified gauge
symmetry relating baryon and leptons in models in which
the necessary sources of GUT-breaking split the unified
multiplets and additional vector-like matter is added to
the MSSM chiral content.

In particular, we have shown that this can be achieved
without fine-tuning or the need of large representations
in simple renormalizable SO(10) models in which the ad-
joint vev is aligned along the 3R or B-L generators. In
this context, it is also possible to relate the size of bary-
onic R-parity violation to the origin of the SM fermion

mass hierarchy and to the success (to some extent) of
unified relations among third family fermion masses.
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Appendix A: Details of the model in Sect. IV

In this appendix we illustrate the details of the anal-
ysis of the model specified by Eq. (13) and Eq. (20) of
Sect. IV. In order to identify the light MSSM components
populating the SO(10) fields 16a, 16, and 10, one has to
inspect the mass matrices stemming from Eq. (13) upon
SO(10)-symmetry breaking. In particular, the piece of
superpotential responsible for the non-pure embedding of
the MSSM degrees of freedom into the relevant SO(10)
representations reads

W � ↵a16 45H16a + �a16H16a10

+M161616 +
M10

2
10 10 , (A1)

where the Higgs superfields 45H and 16H are assumed to
pick up a GUT-scale vev h45Hi = V45T3R and h16Hi =
V16, along the SU(4)PS ⌦ SU(2)L ⌦ U(1)R and SU(5)
invariant directions respectively.

The mechanism we are going to consider is based on
the fact that the 45H vev picks up the SU(2)L singlet
components of 16a and the vev of the 16H picks up the
516a and 510 SU(5) components of 16a and 10. Hence,
upon SO(10)-symmetry breaking, Eq. (A1) leads to the
following mass matrices involving the MSSM-like degrees
of freedom:

�
d
c

16 d
c

10

�✓V45 ↵a M16 0
V16 �a 0 M10

◆0

@
dc16a
dc16
dc10

1

A , (A2)

�
l16 l10

�✓ 0 M16 0
V16 �a 0 M10

◆0

@
l16a
l16
l10

1

A , (A3)

i, j = u, c, t

flavour breaking(= =)Yukawa RPV
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• The Naturalness status of the MSSM is under pressure  

• R-parity violation (especially baryonic) can help

• Requires a quark-lepton asymmetry in apparent contrast with GUT

• Not necessarily ...

• Simple SO(10) models w/o fine-tuning can be conceived
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where the subscripts denote the proper SO(10) contrac-
tions and the 16 should be set to zero at this order. Sub-
stituting the full solutions for 10, 16, 16 into Eq. (13) and
expanding at the third order in 1/M we get

W e↵
RPV = � 1

2M10
(�a16H16a)

2
10

� 1

M2
16M10

� (↵a45H16a)
2
16 (�c16H16c)10 . (17)

While the first term in Eq. (17) is irrelevant for our pur-
pose, the second one leads, upon GUT-symmetry break-
ing, to the �B = 1 RPV operator �00

abcu
c
ad

c
bd

c
c, with

�00
abc =

V 2
45 V16

M2
16 M10

�↵a↵[b�c] . (18)

In the expression above the square brackets stand for
anti-symmetrization (the symmetric part is indeed pro-
jected to zero due to the gauge contractions with dcbd

c
c).

The result in Eq. (18) can be derived in a number of
di↵erent ways as well. For instance, one can directly in-
spect the mass matrices of the relevant fields upon GUT-
symmetry breaking (cf. Eq. (A37) in Appendix A) or,
from a diagrammatic point of view, compute the tree-
level graph in Fig. 1.

FIG. 1: SO(10) super-diagram leading to the �B = 1 RPV
operator in the e↵ective MSSM theory. The vertices and prop-
agators are specified by the superpotential in Eq. (13).

Note that the light fields uc
a, dca in Eq. (18) do not

necessarily correspond to fermion mass eigenstates. The
latter are in fact determined by the diagonalisation of
the SM Yukawa couplings, which have not been specified
so far. In the fermion mass eigenstate basis, in which
the low-energy bounds on �00

ijk are extracted, Eq. (18)
becomes

�00
ijk / (Vuc)ai (Vdc)b[j(Vdc)ck]↵a↵b�c , (19)

where Vuc and Vdc are the unitary transformations used
to diagonalize the up and down Yukawa couplings (on the
quark singlet side), determined by the SO(10) Yukawa
sector.

This leads us to the discussion of the Yukawa sector.
As anticipated in Sect. III A, an additional 10H must be

added in order to accommodate the Higgs field. The SM
Yukawa interactions then follow from

WY = yab16a 16b 10H+ya16a16 10H+y 16 16 10H , (20)

where the last term does not to contribute as the 16
turns out to contain only SU(2)L singlet fields (see Ap-
pendix A).

Simple expressions for the SM Yukawa matrices can
be obtained at the leading order in the limit M � V by
using Eq. (16):

W e↵
Y = yab16a 16b 10H � ya

M16
16a (↵b45H16b)16 10H .

(21)
Denoting the up-quark, down-quark, charged-lepton and
Dirac-neutrino mass matrices by Mu, Md, Me and MD

respectively, Eq. (21) leads to

(Mu)ab = (2yab + ✓ ya↵̂b)vu , (22)
(Md)ab = (2yab � ✓ ya↵̂b)vd , (23)
(Me)ab = (2yab � ✓ ya↵̂b)vd , (24)
(MD)ab = (2yab + ✓ ya↵̂b)vu , (25)

where yab is symmetric, ✓ ⌘ ↵V45/M16, ↵ ⌘ pP
a ↵

2
a,

and vu,d are the EW vevs. The above equations can re-
produce the observed patter of fermion masses and mix-
ings,5 but the larger hierarchy of masses in the up sec-
tor and the deviations from SU(5) relations for the light
down quark and charged lepton require a certain amount
of fine-tuning. Moreover, the above equations do not ad-
dress the origin of the fermion mass hierarchy. Both such
issues can be addressed in the context of flavour models,
as shown by the simple example in the next subsection.

A. Addressing flavour

So far, we did not make any assumption on the flavour
structure of the couplings in Eq. (13). On the other hand,
the latter is relevant for three reasons: i) to account at
the same time for the pattern of SM fermion masses and
mixings, ii) to distinguish di↵erent representations with
the same gauge quantum number (e.g. 16H and 16a),
thus making the superpotential in Eq. (13) to be tech-
nically natural, and iii) to relate the size of the RPV
couplings to the pattern of fermion masses and mixings.
In this section we analyse the consequences of having a
controlled flavour structure by means of a simple flavour
model.

5 The relation Mu = MD implies that the neutrino sector must
be extended with a Majorana mass term for ⌫c⌫c. This can
be achieved, for instance, by means of the e↵ective operator
16i16j16H16H/⇤. In this context it is worth to recall that,
due to the selection rules imposed by kinematics and Lorentz
invariance, the simultaneous presence of �B = 1 and �L = 2
interactions do not endanger matter stability.

• Possibility to fit charged fermions

• Neutrino masses

   - cannot use R-parity violation because of p-decay

   - ∆L=2 effective operator: e.g.
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We will consider two di↵erent limits in the parameter
space of this model. The former limit is useful because
particularly simple and as such it allows to illustrate some
features of the general results. The second limit, to be
considered in Sect. IVA, is interesting because, within
motivated assumptions, it allows to understand features
of the SM third-family fermion spectrum. Let us begin
then by considering the limit in which the extra vector-
like states 10 � 16 � 16 are much heavier than the the
GUT vevs,

M
10

,M
16

� V
16

, V
45

. (14)

In such a case the light MSSM superfields are mostly
contained (up to V/M corrections) in the 16a and one
can integrate out the heavy fields 10, 16 and 16 at the
SO(10) level, thus obtaining at the leading order in 1/M

10 ⇡ � 1

M
10

(�a16H16a)
10

, (15)

16 ⇡ � 1

M
16

(↵a45H16a)
16

, (16)

where the subscripts denote the proper SO(10) contrac-
tions and the 16 should be set to zero at this order. Sub-
stituting the full solutions for 10, 16, 16 into Eq. (13) and
expanding at the third order in 1/M we get

W e↵

RPV

⇡ � 1

2M
10

(�a16H16a)
2

10

� 1

M2

16

M
10

� (↵a45H16a)
2

16

(�c16H16c)
10

. (17)

While the first term in Eq. (17) is irrelevant for our pur-
pose, the second one leads, upon GUT-symmetry break-
ing, to the �B = 1 RPV operator �00

abcu
c
ad

c
bd

c
c, with

�00
abc =

V 2

45

V
16

M2

16

M
10

�↵a↵
[b�c] . (18)

In the expression above the square brackets denote anti-
symmetrization.

The result in Eq. (18) can be derived in a number of
di↵erent ways. For instance, one can directly inspect the
mass matrices of the relevant fields upon GUT-symmetry
breaking (cf. Eq. (A37) in Appendix A) or, from a dia-
grammatic point of view, compute the tree-level graph in
Fig. 1.

Note that the light fields uc
a, dca in Eq. (18) do not

necessarily correspond to fermion mass eigenstates. The
latter are in fact determined by the diagonalisation of
the SM Yukawa couplings, which have not been specified
so far. In the fermion mass eigenstate basis, in which
the low-energy bounds on �00

ijk are extracted, Eq. (18)
becomes

�00
ijk / (Vuc)ai (Vdc)b

[j(Vdc)ck]↵a↵b�c , (19)

where Vuc and Vdc are the unitary transformations used
to diagonalize the up and down Yukawa couplings (on the

FIG. 1: SO(10) super-diagram leading to the �B = 1 RPV
operator in the e↵ective MSSM theory. The vertices and prop-
agators are specified by the superpotential in Eq. (13).

quark singlet side), determined by the SO(10) Yukawa
sector.

This leads us to the discussion of the Yukawa sector.
As anticipated in Sect. III A, an additional 10H must be
added in order to accommodate the Higgs field. The SM
Yukawa interactions then follow from

WY = yab16a 16b 10H+ya16a16 10H+y 16 16 10H , (20)

where the last term does not to contribute as the 16
turns out to contain only SU(2)L singlet fields (see Ap-
pendix A).

Simple expressions for the SM Yukawa matrices can
be obtained at the leading order in the limit M � V by
using Eq. (16):

W e↵

Y = yab16a 16b 10H � ya
M

16

16a (↵b45H16b)
16

10H .

(21)
Denoting the up-quark, down-quark, charged-lepton and
Dirac-neutrino mass matrices by Mu, Md, Me and MD

respectively, Eq. (21) leads to

(Mu)ab = (2yab + ✓ ya↵̂b)vu , (22)
(Md)ab = (2yab � ✓ ya↵̂b)vd , (23)
(Me)ab = (2yab � ✓ ya↵̂b)vd , (24)
(MD)ab = (2yab + ✓ ya↵̂b)vu , (25)

where yab is symmetric, ✓ ⌘ ↵V
45

/M
16

, ↵ ⌘ pP
a ↵

2

a,
and vu,d are the EW vevs. Note that the relation
Mu = MD implies that the neutrino sector must be ex-
tended with a Majorana mass term for ⌫c⌫c. This can
be achieved, for instance, by means of the e↵ective oper-
ator 16a16b16H16H/⇤.4 The superpotential in Eq. (20),
complemented with the e↵ective neutrino-mass operator,
can reproduce the observed patter of fermion masses and

4 In this context it is worth to recall that, due to the selection rules
imposed by kinematics and Lorentz invariance, the simultaneous
presence of �B = 1 and �L = 2 interactions do not endanger
matter stability.
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V45TB�L in the TB�L direction. On top of the three
16a needed to reproduce the SM chiral field content, the
“matter” content involves a 10 and three 10a, a = 1, 2, 3.
The minimal matter content relevant to our goal is then

16a, 10a, 10 45H , 16H , 16H . (11)

The possible sources of the RPV operator uc
id

c
jd

c
k are

16a16b10, 16a16b10c. The latter generically also gener-
ates lepton number violating operators, unless a specific
flavour structure is specified. Let us then consider the
following superpotential involving the former:

W3 = �ab16a16b10 + ↵a10 45H10a
+ ↵ab10a45H10b + hab16H16a10b. (12)

The light fields qa, uc
a, e

c
a are only contained in the 16a.

The operator hab16H16a10b forces the light lepton dou-
blets la to lie in the 10a only, whereas the light dci are both
in the 10a, the 16a, and the 10 because of the mixing in-
duced by ↵a10 45H10a and ↵ab10a45H10b (note that the
second one is necessary otherwise only a single light com-
ponent would appear in both 16a and 10 and �00

ijk would
vanish because of the antisymmetry). Only the lepton
number conserving RPV operator is thus generated.

The embedding of the la and part of the dca in the
10a, forced by the operator hab16H16a10b allows to ob-
tain positive, universal sfermion masses at the tree level,
if supersymmetry is broken by the vev of a 16 [64–68].
In this context, the presence of three 16a � 10a can be
associated to a further stage of unification in E6 [69].
The embedding through 16a � 10a also allows to obtain
a predictive framework for leptogenesis [70, 71].

The doublet-triplet splitting in the Higgs sector could
be in principle obtained for free. Indeed, the doublets
in the 10 are also light and could play the role of the
Higgs doublets. The up Yukawa interactions would in
this case provided by the very same operator generating
�00
ijk. However, no lepton Yukawa would be generated.

Therefore, we need to add again an additional 10H to
accommodate the light Higgs fields and make the dou-
blets in the 10 heavy by adding a M10102 mass term.

Adding the term �abc16a16b10c or mass terms in the
form Mab10a10b or Ma10a10 would introduce lepton
number violation. All other terms involving two matter
fields are allowed.

C. On the naturalness of the superpotential

A comment on the flavour structure of the superpo-
tential in Eq. (9) is in order. We achieved our goal of
generating an isolated baryonic RPV operator without
invoking a special structure with respect to the flavour in-
dex a = 1, 2, 3. On the other hand, we implicitely distin-
guished the three 16a from the 16H and 16. For example,
we assumed 16H16a10 to be present in the superpoten-
tial in Eq. (9), while 16a16b10 is not. The question then
arises whether it is possible to find a symmetry forcing

the superpotential to have the desired form. The an-
swer to this question depends on the form of WH , which
constrains the quantum numbers of 16H , 16H , 45H . Let
us consider for example the case in which WH contains
the terms M45452H and X(16H16H � V 2

16), where X is
an SO(10) singlet, as e.g. in [50, 65]. In such a case, it
turns out that it is not possible to find a symmetry that
allows all the terms we need and forbids the ones that
should not appear. In particular, it is not possible to find
any symmetry that distinguishes the fields 16H and 16a.4

Nonetheless, the structure of the superpotential we need
can be justified at a more fundamental level, once the
origin of the flavour structure of the superpotential (and
of the SM fermions) is addressed. For instance, one could
envisage the presence of an SU(3)H horizontal symmetry
under which the 16a transforms as the fundamental of
SU(3)H , while the 16H transforms trivially. The flavor
symmetry is then formally restored in the superpotential
considering the various couplings as spurions. We will
illustrate this point in more detail in Sect. IVA.

IV. ANALYSIS OF A SIMPLE MODEL

In this section we study in greater detail the first model
of Sect. III A. To this end we consider the superpotential
in Eq. (9) augmented with a mass term for the 10, namely

WRPV = �16 16 10 + ↵a16 45H16a

+ �a16H16a10 +M161616 +
M10

2
10 10 , (13)

where the adjoint gets a vev along the 3R generator. For
simplicity, we will assume in what follows all the para-
meters to be real.

The M10 mass term does not change the conclusions
of Sect. III A and it allows to derive a limit where the
expression of �00

ijk assumes a simple form in terms of the
superpotential parameters of Eq. (13). Let us consider,
indeed, the limit in which the extra vector-like states
10� 16� 16 are much heavier than the the GUT vevs,

M10,M16 � V16, V45. (14)

In such a case the light MSSM superfields are mostly
contained (up to V/M corrections) in the 16a and one
can integrate out the heavy fields 10, 16 and 16 at the
SO(10) level, thus obtaining at the leading order in 1/M

10 ⇡ � 1

M10
(�a16H16a)10 , (15)

16 ⇡ � 1

M16
(↵a45H16a)16 , (16)

4 On the other hand, is it possible to find a Z2 symmetry which dis-
criminates 16 from 16H and 16a (and 16 from 16H as well). An
explicit example being: Z2(45H , 10, 16a, 16, 16H , 16, 16H , X) =
(�,+,+,�,+,�,+,+).
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V45TB�L in the TB�L direction. On top of the three
16a needed to reproduce the SM chiral field content, the
“matter” content involves a 10 and three 10a, a = 1, 2, 3.
The minimal matter content relevant to our goal is then

16a, 10a, 10 45H , 16H , 16H . (11)

The possible sources of the RPV operator uc
id

c
jd

c
k are

16a16b10, 16a16b10c. The latter generically also gener-
ates lepton number violating operators, unless a specific
flavour structure is specified. Let us then consider the
following superpotential involving the former:

W3 = �ab16a16b10 + ↵a10 45H10a
+ ↵ab10a45H10b + hab16H16a10b. (12)

The light fields qa, uc
a, e

c
a are only contained in the 16a.

The operator hab16H16a10b forces the light lepton dou-
blets la to lie in the 10a only, whereas the light dci are both
in the 10a, the 16a, and the 10 because of the mixing in-
duced by ↵a10 45H10a and ↵ab10a45H10b (note that the
second one is necessary otherwise only a single light com-
ponent would appear in both 16a and 10 and �00

ijk would
vanish because of the antisymmetry). Only the lepton
number conserving RPV operator is thus generated.

The embedding of the la and part of the dca in the
10a, forced by the operator hab16H16a10b allows to ob-
tain positive, universal sfermion masses at the tree level,
if supersymmetry is broken by the vev of a 16 [64–68].
In this context, the presence of three 16a � 10a can be
associated to a further stage of unification in E6 [69].
The embedding through 16a � 10a also allows to obtain
a predictive framework for leptogenesis [70, 71].

The doublet-triplet splitting in the Higgs sector could
be in principle obtained for free. Indeed, the doublets
in the 10 are also light and could play the role of the
Higgs doublets. The up Yukawa interactions would in
this case provided by the very same operator generating
�00
ijk. However, no lepton Yukawa would be generated.

Therefore, we need to add again an additional 10H to
accommodate the light Higgs fields and make the dou-
blets in the 10 heavy by adding a M10102 mass term.

Adding the term �abc16a16b10c or mass terms in the
form Mab10a10b or Ma10a10 would introduce lepton
number violation. All other terms involving two matter
fields are allowed.

C. On the naturalness of the superpotential

A comment on the flavour structure of the superpo-
tential in Eq. (9) is in order. We achieved our goal of
generating an isolated baryonic RPV operator without
invoking a special structure with respect to the flavour in-
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10 ⇡ � 1

M10
(�a16H16a)10 , (15)
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   - Horizontal SU(3)H symmetry (16a ~ triplet)

   - SU(3)H broken by two hierarchical spurions A >> B (A and B ~ anti-triplet)
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Let us assume that the theory specified by Eq. (13)
and Eq. (20) is invariant under the horizontal symmetry
group SU(3)H ,6 with the 16a transforming as a triplet
and all the other fields transforming trivially. Let us also
assume then that the horizontal symmetry is broken by
the vev of two linearly independent spurion fields A and
B, which transform as anti-triplets of SU(3)H and whose
absolute values are hierarchical, |A| � |B|. We neglect
the masses and mixings related to the first families, which
are zero in absence of a third source of SU(3)H breaking.

Being A and B the only sources of flavour symmetry
breaking, we can write the parameters ↵a,�a, ya, yab in
terms of the spurions Aa and Ba, in such a way that
the superpotential in Eq. (13) and Eq. (20) is formally
invariant under the horizontal SU(3)H :

↵a = r↵Aa + s↵Ba , (26)
�a = r�Aa + s�Ba , (27)
ya = rzAa + szBa , (28)
yab = ryAaAb + syBaBb + ty (AaBb +BaAb) , (29)

where the coe�cients r#, s# and ty are O(1) numbers,
but they could be assumed to be small or vanishing with-
out fine-tuning. For the same reason, unwanted interac-
tions such as �a16a16 10 can be assumed to be absent
from Eq. (13) without fine-tuning.

In what follows it turns out to be useful to trade the
vectors Aa and Ba for ↵a and �a and, by means of an
SU(3)H rotation, to go in the basis (↵a) = ↵(0, 0, 1) and
(�a) = �(0, ✏, 1), where ↵ and � are O(1) numbers and
✏ ⌧ 1, as a consequence of |B| ⌧ |A|. In the latter ba-
sis the remaining parameters of the superpotential trans-
forming non-trivially under the flavour group are

y33 ⇠ y3 = O(1) , (30)

y23 = y32 ⇠ y2 = O(✏) , (31)
y22 = O(✏2) . (32)

For simplicity we shall factor out the proper ✏ dependence
from the parameters in Eqs. (31)–(32), i.e. y23 ! y23✏,
y2 ! y2✏ and y22 ! y22✏2, so that all the parameters of
the superpotential are O(1) numbers.

At this point one can inspect the mass matrices after
SO(10)-symmetry breaking from Eq. (13) and find the
light MSSM content of 16a, 16, 10 (cf. Eqs. (B1)–(B5)
in Appendix B). The Yukawa matrices (in the 2⇥ 2 ap-
proximation) can then be read directly from Eq. (20).
We report them for completeness in Eqs. (B6)–(B8) of
Appendix B. At the leading order in ✏ they yield the

6 The horizontal SU(3)H symmetry in the context of GUTs was
originally discussed in Refs. [72–74].

following relations for the physical observables:

mt = (2c✓y33 + s✓y3)vu , (33)

mc = ✏2
✓
2y22 � 2y23

2c✓y23 + s✓y2
2c✓y33 + s✓y3

◆
vu , (34)

mb = N (2c✓y33 � s✓y3) vd , (35)

ms = ✏2
✓
2y22 � 2y23

2c✓y23 � s✓y2
2c✓y33 � s✓y3

◆
vd , (36)

m⌧ = c� (2c✓y33 � s✓y3) vd , (37)

mµ = ✏2
✓
2y22 � 2y23

2c✓y23 � s✓y2
2c✓y33 � s✓y3

◆
vd , (38)

|Vts| = |Vcb| = ✏

����
2c✓y23 + s✓y2
2c✓y33 + s✓y3

� 2c✓y23 � s✓y2
2c✓y33 � s✓y3

���� , (39)

where we defined the quantities:

t✓ ⌘ V45↵

M16
, t� ⌘ V16�

M10
, N ⌘

 
1 + t2✓

1 + t2✓ + t2�

! 1
2

, (40)

with t, s and c denoting the tan, sin and cos functions
respectively.

The expression above show that the larger hierarchy
in the up sector, (mc/mt)GUT ⌧ (ms/mb)GUT at the
GUT scale, can be due to N ⌧ 1 (so that a cancellation
between the two terms in 2c✓y33 � s✓y3 does not need
to be invoked). Moreover, (mb)GUT ⇡ (m⌧ )GUT follows
from N ⇡ c�. The two conditions are both satisfied if
t2✓ ⌧ 1 ⌧ t2�, i.e. if

M10 < V16, V45 < M16, (41)

which can be interpreted as a sign of a two-step breaking
SO(10) ! SU(5) at the scale V16 ⇠ M16 followed by
SU(5) ! GSM at the lower scale V45 ⇠ M10.

On the other hand, the expressions in Eqs. (33)–(38)
show that, independent of the limit chosen, mµ ⇡ ms at
the GUT scale, which is not phenomenologically viable.
This conclusion can be evaded if the subleading spurion
B is not SU(5) invariant (which may be associated to its
being subleading). Let us then concentrate on the third
family relations. In the limit in Eq. (41), the expressions
for the third family fermion masses become

mt ⇡ 2y33vu , (42)

mb ⇡ 2y33

✓
M10

�V16

◆
vd , (43)

m⌧ ⇡ 2y33

✓
M10

�V16

◆
vd . (44)

Let us now consider the size and the structure of the
RPV couplings. The latter are obtained by projecting
the 161610 operator in Eq. (13) onto the light compo-
nents (cf. Eq. (B11) in Appendix B) and by taking into
account the subsequent EW rotation matrices Vuc and

7

Let us assume that the theory specified by Eq. (13)
and Eq. (20) is invariant under the horizontal symmetry
group SU(3)H ,6 with the 16a transforming as a triplet
and all the other fields transforming trivially. Let us also
assume then that the horizontal symmetry is broken by
the vev of two linearly independent spurion fields A and
B, which transform as anti-triplets of SU(3)H and whose
absolute values are hierarchical, |A| � |B|. We neglect
the masses and mixings related to the first families, which
are zero in absence of a third source of SU(3)H breaking.

Being A and B the only sources of flavour symmetry
breaking, we can write the parameters ↵a,�a, ya, yab in
terms of the spurions Aa and Ba, in such a way that
the superpotential in Eq. (13) and Eq. (20) is formally
invariant under the horizontal SU(3)H :

↵a = r↵Aa + s↵Ba , (26)
�a = r�Aa + s�Ba , (27)
ya = rzAa + szBa , (28)
yab = ryAaAb + syBaBb + ty (AaBb +BaAb) , (29)

where the coe�cients r#, s# and ty are O(1) numbers,
but they could be assumed to be small or vanishing with-
out fine-tuning. For the same reason, unwanted interac-
tions such as �a16a16 10 can be assumed to be absent
from Eq. (13) without fine-tuning.

In what follows it turns out to be useful to trade the
vectors Aa and Ba for ↵a and �a and, by means of an
SU(3)H rotation, to go in the basis (↵a) = ↵(0, 0, 1) and
(�a) = �(0, ✏, 1), where ↵ and � are O(1) numbers and
✏ ⌧ 1, as a consequence of |B| ⌧ |A|. In the latter ba-
sis the remaining parameters of the superpotential trans-
forming non-trivially under the flavour group are

y33 ⇠ y3 = O(1) , (30)

y23 = y32 ⇠ y2 = O(✏) , (31)
y22 = O(✏2) . (32)

For simplicity we shall factor out the proper ✏ dependence
from the parameters in Eqs. (31)–(32), i.e. y23 ! y23✏,
y2 ! y2✏ and y22 ! y22✏2, so that all the parameters of
the superpotential are O(1) numbers.

At this point one can inspect the mass matrices after
SO(10)-symmetry breaking from Eq. (13) and find the
light MSSM content of 16a, 16, 10 (cf. Eqs. (B1)–(B5)
in Appendix B). The Yukawa matrices (in the 2⇥ 2 ap-
proximation) can then be read directly from Eq. (20).
We report them for completeness in Eqs. (B6)–(B8) of
Appendix B. At the leading order in ✏ they yield the

6 The horizontal SU(3)H symmetry in the context of GUTs was
originally discussed in Refs. [72–74].

following relations for the physical observables:

mt = (2c✓y33 + s✓y3)vu , (33)

mc = ✏2
✓
2y22 � 2y23

2c✓y23 + s✓y2
2c✓y33 + s✓y3

◆
vu , (34)

mb = N (2c✓y33 � s✓y3) vd , (35)

ms = ✏2
✓
2y22 � 2y23

2c✓y23 � s✓y2
2c✓y33 � s✓y3

◆
vd , (36)

m⌧ = c� (2c✓y33 � s✓y3) vd , (37)

mµ = ✏2
✓
2y22 � 2y23

2c✓y23 � s✓y2
2c✓y33 � s✓y3

◆
vd , (38)

|Vts| = |Vcb| = ✏

����
2c✓y23 + s✓y2
2c✓y33 + s✓y3

� 2c✓y23 � s✓y2
2c✓y33 � s✓y3

���� , (39)

where we defined the quantities:

t✓ ⌘ V45↵

M16
, t� ⌘ V16�

M10
, N ⌘

 
1 + t2✓

1 + t2✓ + t2�

! 1
2

, (40)

with t, s and c denoting the tan, sin and cos functions
respectively.

The expression above show that the larger hierarchy
in the up sector, (mc/mt)GUT ⌧ (ms/mb)GUT at the
GUT scale, can be due to N ⌧ 1 (so that a cancellation
between the two terms in 2c✓y33 � s✓y3 does not need
to be invoked). Moreover, (mb)GUT ⇡ (m⌧ )GUT follows
from N ⇡ c�. The two conditions are both satisfied if
t2✓ ⌧ 1 ⌧ t2�, i.e. if

M10 < V16, V45 < M16, (41)

which can be interpreted as a sign of a two-step breaking
SO(10) ! SU(5) at the scale V16 ⇠ M16 followed by
SU(5) ! GSM at the lower scale V45 ⇠ M10.

On the other hand, the expressions in Eqs. (33)–(38)
show that, independent of the limit chosen, mµ ⇡ ms at
the GUT scale, which is not phenomenologically viable.
This conclusion can be evaded if the subleading spurion
B is not SU(5) invariant (which may be associated to its
being subleading). Let us then concentrate on the third
family relations. In the limit in Eq. (41), the expressions
for the third family fermion masses become

mt ⇡ 2y33vu , (42)

mb ⇡ 2y33

✓
M10

�V16

◆
vd , (43)

m⌧ ⇡ 2y33

✓
M10

�V16

◆
vd . (44)

Let us now consider the size and the structure of the
RPV couplings. The latter are obtained by projecting
the 161610 operator in Eq. (13) onto the light compo-
nents (cf. Eq. (B11) in Appendix B) and by taking into
account the subsequent EW rotation matrices Vuc and

7

Let us assume that the theory specified by Eq. (13)
and Eq. (20) is invariant under the horizontal symmetry
group SU(3)H ,6 with the 16a transforming as a triplet
and all the other fields transforming trivially. Let us also
assume then that the horizontal symmetry is broken by
the vev of two linearly independent spurion fields A and
B, which transform as anti-triplets of SU(3)H and whose
absolute values are hierarchical, |A| � |B|. We neglect
the masses and mixings related to the first families, which
are zero in absence of a third source of SU(3)H breaking.

Being A and B the only sources of flavour symmetry
breaking, we can write the parameters ↵a,�a, ya, yab in
terms of the spurions Aa and Ba, in such a way that
the superpotential in Eq. (13) and Eq. (20) is formally
invariant under the horizontal SU(3)H :

↵a = r↵Aa + s↵Ba , (26)
�a = r�Aa + s�Ba , (27)
ya = rzAa + szBa , (28)
yab = ryAaAb + syBaBb + ty (AaBb +BaAb) , (29)

where the coe�cients r#, s# and ty are O(1) numbers,
but they could be assumed to be small or vanishing with-
out fine-tuning. For the same reason, unwanted interac-
tions such as �a16a16 10 can be assumed to be absent
from Eq. (13) without fine-tuning.

In what follows it turns out to be useful to trade the
vectors Aa and Ba for ↵a and �a and, by means of an
SU(3)H rotation, to go in the basis (↵a) = ↵(0, 0, 1) and
(�a) = �(0, ✏, 1), where ↵ and � are O(1) numbers and
✏ ⌧ 1, as a consequence of |B| ⌧ |A|. In the latter ba-
sis the remaining parameters of the superpotential trans-
forming non-trivially under the flavour group are

y33 ⇠ y3 = O(1) , (30)

y23 = y32 ⇠ y2 = O(✏) , (31)
y22 = O(✏2) . (32)

For simplicity we shall factor out the proper ✏ dependence
from the parameters in Eqs. (31)–(32), i.e. y23 ! y23✏,
y2 ! y2✏ and y22 ! y22✏2, so that all the parameters of
the superpotential are O(1) numbers.

At this point one can inspect the mass matrices after
SO(10)-symmetry breaking from Eq. (13) and find the
light MSSM content of 16a, 16, 10 (cf. Eqs. (B1)–(B5)
in Appendix B). The Yukawa matrices (in the 2⇥ 2 ap-
proximation) can then be read directly from Eq. (20).
We report them for completeness in Eqs. (B6)–(B8) of
Appendix B. At the leading order in ✏ they yield the

6 The horizontal SU(3)H symmetry in the context of GUTs was
originally discussed in Refs. [72–74].

following relations for the physical observables:

mt = (2c✓y33 + s✓y3)vu , (33)

mc = ✏2
✓
2y22 � 2y23

2c✓y23 + s✓y2
2c✓y33 + s✓y3

◆
vu , (34)

mb = N (2c✓y33 � s✓y3) vd , (35)

ms = ✏2
✓
2y22 � 2y23

2c✓y23 � s✓y2
2c✓y33 � s✓y3

◆
vd , (36)

m⌧ = c� (2c✓y33 � s✓y3) vd , (37)

mµ = ✏2
✓
2y22 � 2y23

2c✓y23 � s✓y2
2c✓y33 � s✓y3

◆
vd , (38)

|Vts| = |Vcb| = ✏

����
2c✓y23 + s✓y2
2c✓y33 + s✓y3

� 2c✓y23 � s✓y2
2c✓y33 � s✓y3

���� , (39)

where we defined the quantities:

t✓ ⌘ V45↵

M16
, t� ⌘ V16�

M10
, N ⌘

 
1 + t2✓

1 + t2✓ + t2�

! 1
2

, (40)

with t, s and c denoting the tan, sin and cos functions
respectively.

The expression above show that the larger hierarchy
in the up sector, (mc/mt)GUT ⌧ (ms/mb)GUT at the
GUT scale, can be due to N ⌧ 1 (so that a cancellation
between the two terms in 2c✓y33 � s✓y3 does not need
to be invoked). Moreover, (mb)GUT ⇡ (m⌧ )GUT follows
from N ⇡ c�. The two conditions are both satisfied if
t2✓ ⌧ 1 ⌧ t2�, i.e. if

M10 < V16, V45 < M16, (41)

which can be interpreted as a sign of a two-step breaking
SO(10) ! SU(5) at the scale V16 ⇠ M16 followed by
SU(5) ! GSM at the lower scale V45 ⇠ M10.

On the other hand, the expressions in Eqs. (33)–(38)
show that, independent of the limit chosen, mµ ⇡ ms at
the GUT scale, which is not phenomenologically viable.
This conclusion can be evaded if the subleading spurion
B is not SU(5) invariant (which may be associated to its
being subleading). Let us then concentrate on the third
family relations. In the limit in Eq. (41), the expressions
for the third family fermion masses become

mt ⇡ 2y33vu , (42)

mb ⇡ 2y33

✓
M10

�V16

◆
vd , (43)

m⌧ ⇡ 2y33

✓
M10

�V16

◆
vd . (44)

Let us now consider the size and the structure of the
RPV couplings. The latter are obtained by projecting
the 161610 operator in Eq. (13) onto the light compo-
nents (cf. Eq. (B11) in Appendix B) and by taking into
account the subsequent EW rotation matrices Vuc and

7

Let us assume that the theory specified by Eq. (13)
and Eq. (20) is invariant under the horizontal symmetry
group SU(3)H ,6 with the 16a transforming as a triplet
and all the other fields transforming trivially. Let us also
assume then that the horizontal symmetry is broken by
the vev of two linearly independent spurion fields A and
B, which transform as anti-triplets of SU(3)H and whose
absolute values are hierarchical, |A| � |B|. We neglect
the masses and mixings related to the first families, which
are zero in absence of a third source of SU(3)H breaking.

Being A and B the only sources of flavour symmetry
breaking, we can write the parameters ↵a,�a, ya, yab in
terms of the spurions Aa and Ba, in such a way that
the superpotential in Eq. (13) and Eq. (20) is formally
invariant under the horizontal SU(3)H :

↵a = r↵Aa + s↵Ba , (26)
�a = r�Aa + s�Ba , (27)
ya = rzAa + szBa , (28)
yab = ryAaAb + syBaBb + ty (AaBb +BaAb) , (29)

where the coe�cients r#, s# and ty are O(1) numbers,
but they could be assumed to be small or vanishing with-
out fine-tuning. For the same reason, unwanted interac-
tions such as �a16a16 10 can be assumed to be absent
from Eq. (13) without fine-tuning.

In what follows it turns out to be useful to trade the
vectors Aa and Ba for ↵a and �a and, by means of an
SU(3)H rotation, to go in the basis (↵a) = ↵(0, 0, 1) and
(�a) = �(0, ✏, 1), where ↵ and � are O(1) numbers and
✏ ⌧ 1, as a consequence of |B| ⌧ |A|. In the latter ba-
sis the remaining parameters of the superpotential trans-
forming non-trivially under the flavour group are

y33 ⇠ y3 = O(1) , (30)

y23 = y32 ⇠ y2 = O(✏) , (31)
y22 = O(✏2) . (32)

For simplicity we shall factor out the proper ✏ dependence
from the parameters in Eqs. (31)–(32), i.e. y23 ! y23✏,
y2 ! y2✏ and y22 ! y22✏2, so that all the parameters of
the superpotential are O(1) numbers.

At this point one can inspect the mass matrices after
SO(10)-symmetry breaking from Eq. (13) and find the
light MSSM content of 16a, 16, 10 (cf. Eqs. (B1)–(B5)
in Appendix B). The Yukawa matrices (in the 2⇥ 2 ap-
proximation) can then be read directly from Eq. (20).
We report them for completeness in Eqs. (B6)–(B8) of
Appendix B. At the leading order in ✏ they yield the

6 The horizontal SU(3)H symmetry in the context of GUTs was
originally discussed in Refs. [72–74].

following relations for the physical observables:

mt = (2c✓y33 + s✓y3)vu , (33)

mc = ✏2
✓
2y22 � 2y23

2c✓y23 + s✓y2
2c✓y33 + s✓y3

◆
vu , (34)

mb = N (2c✓y33 � s✓y3) vd , (35)

ms = ✏2
✓
2y22 � 2y23

2c✓y23 � s✓y2
2c✓y33 � s✓y3

◆
vd , (36)

m⌧ = c� (2c✓y33 � s✓y3) vd , (37)

mµ = ✏2
✓
2y22 � 2y23

2c✓y23 � s✓y2
2c✓y33 � s✓y3

◆
vd , (38)

|Vts| = |Vcb| = ✏

����
2c✓y23 + s✓y2
2c✓y33 + s✓y3

� 2c✓y23 � s✓y2
2c✓y33 � s✓y3

���� , (39)

where we defined the quantities:

t✓ ⌘ V45↵

M16
, t� ⌘ V16�

M10
, N ⌘

 
1 + t2✓

1 + t2✓ + t2�

! 1
2

, (40)

with t, s and c denoting the tan, sin and cos functions
respectively.

The expression above show that the larger hierarchy
in the up sector, (mc/mt)GUT ⌧ (ms/mb)GUT at the
GUT scale, can be due to N ⌧ 1 (so that a cancellation
between the two terms in 2c✓y33 � s✓y3 does not need
to be invoked). Moreover, (mb)GUT ⇡ (m⌧ )GUT follows
from N ⇡ c�. The two conditions are both satisfied if
t2✓ ⌧ 1 ⌧ t2�, i.e. if

M10 < V16, V45 < M16, (41)

which can be interpreted as a sign of a two-step breaking
SO(10) ! SU(5) at the scale V16 ⇠ M16 followed by
SU(5) ! GSM at the lower scale V45 ⇠ M10.

On the other hand, the expressions in Eqs. (33)–(38)
show that, independent of the limit chosen, mµ ⇡ ms at
the GUT scale, which is not phenomenologically viable.
This conclusion can be evaded if the subleading spurion
B is not SU(5) invariant (which may be associated to its
being subleading). Let us then concentrate on the third
family relations. In the limit in Eq. (41), the expressions
for the third family fermion masses become

mt ⇡ 2y33vu , (42)

mb ⇡ 2y33

✓
M10

�V16

◆
vd , (43)

m⌧ ⇡ 2y33

✓
M10

�V16

◆
vd . (44)

Let us now consider the size and the structure of the
RPV couplings. The latter are obtained by projecting
the 161610 operator in Eq. (13) onto the light compo-
nents (cf. Eq. (B11) in Appendix B) and by taking into
account the subsequent EW rotation matrices Vuc and

7

Let us assume that the theory specified by Eq. (13)
and Eq. (20) is invariant under the horizontal symmetry
group SU(3)H ,6 with the 16a transforming as a triplet
and all the other fields transforming trivially. Let us also
assume then that the horizontal symmetry is broken by
the vev of two linearly independent spurion fields A and
B, which transform as anti-triplets of SU(3)H and whose
absolute values are hierarchical, |A| � |B|. We neglect
the masses and mixings related to the first families, which
are zero in absence of a third source of SU(3)H breaking.

Being A and B the only sources of flavour symmetry
breaking, we can write the parameters ↵a,�a, ya, yab in
terms of the spurions Aa and Ba, in such a way that
the superpotential in Eq. (13) and Eq. (20) is formally
invariant under the horizontal SU(3)H :

↵a = r↵Aa + s↵Ba , (26)
�a = r�Aa + s�Ba , (27)
ya = rzAa + szBa , (28)
yab = ryAaAb + syBaBb + ty (AaBb +BaAb) , (29)

where the coe�cients r#, s# and ty are O(1) numbers,
but they could be assumed to be small or vanishing with-
out fine-tuning. For the same reason, unwanted interac-
tions such as �a16a16 10 can be assumed to be absent
from Eq. (13) without fine-tuning.

In what follows it turns out to be useful to trade the
vectors Aa and Ba for ↵a and �a and, by means of an
SU(3)H rotation, to go in the basis (↵a) = ↵(0, 0, 1) and
(�a) = �(0, ✏, 1), where ↵ and � are O(1) numbers and
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y33 ⇠ y3 = O(1) , (30)

y23 = y32 ⇠ y2 = O(✏) , (31)
y22 = O(✏2) . (32)

For simplicity we shall factor out the proper ✏ dependence
from the parameters in Eqs. (31)–(32), i.e. y23 ! y23✏,
y2 ! y2✏ and y22 ! y22✏2, so that all the parameters of
the superpotential are O(1) numbers.

At this point one can inspect the mass matrices after
SO(10)-symmetry breaking from Eq. (13) and find the
light MSSM content of 16a, 16, 10 (cf. Eqs. (B1)–(B5)
in Appendix B). The Yukawa matrices (in the 2⇥ 2 ap-
proximation) can then be read directly from Eq. (20).
We report them for completeness in Eqs. (B6)–(B8) of
Appendix B. At the leading order in ✏ they yield the

6 The horizontal SU(3)H symmetry in the context of GUTs was
originally discussed in Refs. [72–74].
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t✓ ⌘ V45↵

M16
, t� ⌘ V16�

M10
, N ⌘

 
1 + t2✓

1 + t2✓ + t2�

! 1
2

, (40)

with t, s and c denoting the tan, sin and cos functions
respectively.

The expression above show that the larger hierarchy
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SO(10) ! SU(5) at the scale V16 ⇠ M16 followed by
SU(5) ! GSM at the lower scale V45 ⇠ M10.
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◆
vd . (44)

Let us now consider the size and the structure of the
RPV couplings. The latter are obtained by projecting
the 161610 operator in Eq. (13) onto the light compo-
nents (cf. Eq. (B11) in Appendix B) and by taking into
account the subsequent EW rotation matrices Vuc and
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Vdc (cf. Eqs. (B9)–(B10) in Appendix B). This yields:

�00
tbs = 2� ✏

s✓t✓t�
(1 + t2✓ + t2�)

1/2
, (45)

�00
cbs = �✏

2y23
2c✓y33 + s✓y3

�00
tbs . (46)

The RPV couplings involving the first family vanish be-
cause, having introduced only two spurions, we have ne-
glected the structure associated to the first family masses.
Note also that the RPV coupling is proportional to the
small misalignment between the 3-vectors ↵a and �a, i.e.
Eqs. (45)–(45) vanish in the ✏ ! 0 limit. Eventually, we
obtain an hierarchical structure for the RPV couplings.
In the limit in Eq. (41), the expressions above simplify
to

�00
tbs = 2� ✏ t2✓ , (47)

�00
cbs = �✏

y23
y33

�00
tbs . (48)

The RPV couplings are therefore proportional to t2✓,
which is the same parameter that controls the deviation
of mb/m⌧ from 1 at the unification scale.

V. PHENOMENOLOGICAL REMARKS

The baryon number RPV interactions are subject to
stringent low-energy constraints coming mainly from pro-
ton decay, di-nucleon decay, n-n oscillations and flavour
violating observables. Rescaling the bounds in ref. [75]
for superpartners around 500 GeV and assuming a grav-
itino heavier than the proton (in order to evade the con-
straints from proton decay) but not too heavy (in order
not to enhance flavour-anarchical supergravity e↵ects)
one gets:7

|�00
uds| < O(10�5) [NN ! KK] , (49)

|�00
udb| < O(10�2) [n� n] , (50)

|�00
tds| < O(10�1) [n� n] , (51)

|�00
tdb| < O(10�1) [n� n] , (52)

and

|�00
cdb �

00
csb| < O(10�3) [K �K] , (53)

|�00
tdb �

00
tsb| < O(10�3) [K �K] , (54)

|�00
ids �

00
idb| < O(10�1) [B+ ! K0⇡+] , (55)

|�00
ids �

00
isb| < O(10�3) [B� ! �⇡�] , (56)

with i = u, c, t for the product of two RPV couplings.

7 The quoted bounds have a strong dependence on the spectrum of
the superpartners, and large uncertainties related to the flavour
structure of the soft terms and the hadronic matrix elements.
However, for the purposes of our discussion an order of magni-
tude estimate is su�cient (see e.g. [75] and references therein).

On the other hand, the RPV couplings cannot be too
small, if the SUSY searches based on the missing energy
signature are to be evaded. This is the case if the NLSP
(we assume the LSP to be the gravitino) has a prompt
decay corresponding to a decay length smaller than about
2 mm [28].8

This way supersymmetry can be “hidden” into QCD
backgrounds and the lower bounds on superpartners can
be relaxed with respect to the R-parity conserving case.

To illustrate this point, let us compare the current ex-
clusion limits from LHC in standard MSSM scenarios to
the case with bayonic RPV. In the case of the R-parity
conserving MSSM the present lower bounds on the stop
and gluino masses are respectively mt̃ & 700 GeV [76, 77]
and mg̃ & 1.3 TeV [78, 79].9 In the case of the simplified
squark-gluino-neutralino model one gets mg̃,mt̃ & 1.5
TeV (with only 5.8 fb�1 of integrated luminosity andp
s = 8 TeV) [80]. On the other hand, if we allow the

light colored s-particles (gluinos and squarks) to decay
promptly via the ucdcdc operator the bounds are much
less stringent. For instance, if the stop decays directly
into jets neither ATLAS nor CMS can currently place
significant limits on the stop mass [17, 81–83]. The de-
cay of the gluino can proceed either through g̃ ! t̃t (and
consequently t̃ ! bs for example) or directly into jets. In
the former case the bound on the gluino mass is 890 GeV
(with 20.7 fb�1 and

p
s = 8 TeV) [84], while in the latter

case 666 GeV (with 4.6 fb�1 and
p
s = 7 TeV) [85].

Let us quantify now the minimal amount of RPV
needed in order to have a prompt vertex. As a benchmark
scenario we consider the case of a right-handed squark
NLSP decaying into two SM fermions. In such a case the
decay length reads

L = 2mm(��)

✓
500 GeV

mq̃c

◆✓
0.9 · 10�7

�00

◆2

, (57)

where � is the velocity of the decaying particle and � is
the Lorentz boost factor. Hence, a decay length smaller
than about 2 mm, requires �00 > O(10�7). Therefore, a
RPV coupling in the range 10�7 . �00 . 10�5 would give
rise to a prompt decay, while also satisfying the bounds
in Eqs. (49)–(56) independent of its flavour numbers.10

Nevertheless, it is worth to mention that the flavour
structure of the GUT-induced �00

ijk which emerges from
Eq. (19) is of the type

�00
ijk / ↵i�[j�k] , (58)

where ↵i, �j and �k are independent 3-vectors in the
flavour space. This non-generic structure implies a set of

8 Larger decay lengths give rise to displaced vertices which require
dedicated analysis. See for instance [10, 44].

9 These conservative bounds apply in the case of a light neutralino
and away from the kinematical configuration mt̃ ⇡ mt +m�.

10 There could be cases where a larger �00 is needed for a prompt
decay. For example in the case of a gluino decaying in the kine-
matical configuration mg̃ ⇡ mt +mt̃ [10].
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where the subscripts denote the proper SO(10) contrac-
tions and the 16 should be set to zero at this order. Sub-
stituting the full solutions for 10, 16, 16 into Eq. (13) and
expanding at the third order in 1/M we get

W e↵
RPV = � 1

2M10
(�a16H16a)

2
10

� 1

M2
16M10

� (↵a45H16a)
2
16 (�c16H16c)10 . (17)

While the first term in Eq. (17) is irrelevant for our pur-
pose, the second one leads, upon GUT-symmetry break-
ing, to the �B = 1 RPV operator �00

abcu
c
ad

c
bd

c
c, with

�00
abc =

V 2
45 V16

M2
16 M10

�↵a↵[b�c] . (18)

In the expression above the square brackets stand for
anti-symmetrization (the symmetric part is indeed pro-
jected to zero due to the gauge contractions with dcbd

c
c).

The result in Eq. (18) can be derived in a number of
di↵erent ways as well. For instance, one can directly in-
spect the mass matrices of the relevant fields upon GUT-
symmetry breaking (cf. Eq. (A37) in Appendix A) or,
from a diagrammatic point of view, compute the tree-
level graph in Fig. 1.

FIG. 1: SO(10) super-diagram leading to the �B = 1 RPV
operator in the e↵ective MSSM theory. The vertices and prop-
agators are specified by the superpotential in Eq. (13).

Note that the light fields uc
a, dca in Eq. (18) do not

necessarily correspond to fermion mass eigenstates. The
latter are in fact determined by the diagonalisation of
the SM Yukawa couplings, which have not been specified
so far. In the fermion mass eigenstate basis, in which
the low-energy bounds on �00

ijk are extracted, Eq. (18)
becomes

�00
ijk / (Vuc)ai (Vdc)b[j(Vdc)ck]↵a↵b�c , (19)

where Vuc and Vdc are the unitary transformations used
to diagonalize the up and down Yukawa couplings (on the
quark singlet side), determined by the SO(10) Yukawa
sector.

This leads us to the discussion of the Yukawa sector.
As anticipated in Sect. III A, an additional 10H must be

added in order to accommodate the Higgs field. The SM
Yukawa interactions then follow from

WY = yab16a 16b 10H+ya16a16 10H+y 16 16 10H , (20)

where the last term does not to contribute as the 16
turns out to contain only SU(2)L singlet fields (see Ap-
pendix A).

Simple expressions for the SM Yukawa matrices can
be obtained at the leading order in the limit M � V by
using Eq. (16):

W e↵
Y = yab16a 16b 10H � ya

M16
16a (↵b45H16b)16 10H .

(21)
Denoting the up-quark, down-quark, charged-lepton and
Dirac-neutrino mass matrices by Mu, Md, Me and MD

respectively, Eq. (21) leads to

(Mu)ab = (2yab + ✓ ya↵̂b)vu , (22)
(Md)ab = (2yab � ✓ ya↵̂b)vd , (23)
(Me)ab = (2yab � ✓ ya↵̂b)vd , (24)
(MD)ab = (2yab + ✓ ya↵̂b)vu , (25)

where yab is symmetric, ✓ ⌘ ↵V45/M16, ↵ ⌘ pP
a ↵

2
a,

and vu,d are the EW vevs. The above equations can re-
produce the observed patter of fermion masses and mix-
ings,5 but the larger hierarchy of masses in the up sec-
tor and the deviations from SU(5) relations for the light
down quark and charged lepton require a certain amount
of fine-tuning. Moreover, the above equations do not ad-
dress the origin of the fermion mass hierarchy. Both such
issues can be addressed in the context of flavour models,
as shown by the simple example in the next subsection.

A. Addressing flavour

So far, we did not make any assumption on the flavour
structure of the couplings in Eq. (13). On the other hand,
the latter is relevant for three reasons: i) to account at
the same time for the pattern of SM fermion masses and
mixings, ii) to distinguish di↵erent representations with
the same gauge quantum number (e.g. 16H and 16a),
thus making the superpotential in Eq. (13) to be tech-
nically natural, and iii) to relate the size of the RPV
couplings to the pattern of fermion masses and mixings.
In this section we analyse the consequences of having a
controlled flavour structure by means of a simple flavour
model.

5 The relation Mu = MD implies that the neutrino sector must
be extended with a Majorana mass term for ⌫c⌫c. This can
be achieved, for instance, by means of the e↵ective operator
16i16j16H16H/⇤. In this context it is worth to recall that,
due to the selection rules imposed by kinematics and Lorentz
invariance, the simultaneous presence of �B = 1 and �L = 2
interactions do not endanger matter stability.
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   - Qualitatively different from other frameworks like MFV-RPV [Nikolidakis, Smith (2008)]
[Csaki, Grossman, Heidenreich (2012)]

Yukawa sector 



VEV alignment
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   - Yukawa sector: 

Wvev-align. = m145
2
H +m254

2
H + �154H452H + �254

3
H

h45Hi = diag(VR, VR, VB�L, VB�L, VB�L)⌦ i�2

h54Hi = diag(� 3
2V54,� 3

2V54, V54, V54, V54)⌦ I

F45H = 0• SUSY vacuum implies                , namely

• A solution is provided by                        and VB�L = 0

(m1 + �1V54)VB�L = 0

(m1 � 3
2�1V54)VR = 0

m1 = 3
2�1V54


