

LHCb results relevant to SUSY and BSM physics

SUSY 2013, 31st August 2013 Mitesh Patel (Imperial College London) On behalf of the LHCb Collaboration

Introduction

- The interest in B physics :
 - Virtual contributions from particles in loop processes → deviations that have often preceded the direct observation of new particles:
 - Suppression of $K^0 \rightarrow \mu \mu \rightarrow GIM$ mechanism (charm quark)
 - B- \overline{B} oscillations \rightarrow heavy top quark
 - $B(B^0 \rightarrow K^{*0}\gamma) \rightarrow$ indirect evidence top quark (and nothing else)
 - ...
- Present interest from two sides :
 - CKM is dominant mechanism in SM but does it provide a complete description of CPV?
 - Rare decays are a window on virtual new particles beyond the energy scale accessible in direct searches

[see talks of K. Bruyn, D. Savrina, S. Coquereau, S. Tourneur]

- Will select a few topics from each of these areas
- Will also try and point out future prospects

The CKM picture

- LHCb has added a large number of measurements showing that the CKM picture remains rock-solid
 - Time integrated measurements of $B \rightarrow K\pi$
 - Angle γ measurements
 - Mixing measurements

Time integrated CPV in $B{\rightarrow} K\pi$

• Recent LHCb analysis :

$$\begin{split} \mathsf{A}_{\mathsf{CP}}(\mathsf{B}_{\mathsf{d}}^{\ 0}\to\mathsf{K}^{*}\pi^{-}) &= -0.080\pm0.007\pm0.003\\ \mathsf{A}_{\mathsf{CP}}(\mathsf{B}_{\mathsf{s}}^{\ 0}\to\mathsf{K}^{-}\pi^{+}) &= +0.27\pm0.04\pm0.01 \end{split}$$

- Det. asymm $D^* \rightarrow D(K\pi/KK) \pi$
- Prod. asymm time-dep study
- Exploit approx. flavour symmetry to cancel unknown theory parameters and hadronic uncert.
- SM predicts

 $\Delta = \frac{A_{CP}(B^0 \rightarrow K^+ \pi^-)}{A_{CP}(B_s \rightarrow K^- \pi^+)} + \frac{BR(B_s \rightarrow K^- \pi^+)}{BR(B^0 \rightarrow K^+ \pi^-)} \frac{\tau_d}{\tau_s} = \mathbf{0}$

• LHCb measurement :

 $\Delta = -0.02 \pm 0.05 \pm 0.04$

[PRL110(2013)221601]

[world's best] [world's first 5σ observation of CPV in B_s^0 system]

4

CKM angle y

- Progress in comparison of tree and loop level constraints needs improved knowledge of angle γ
 - Direct knowledge at 12° level
 - Indirectly (i.e. NP sensitive) determination at the 4º level

- B→Dh, D→K3π [K3π] [PLB 723 (2013) 44, 1fb⁻¹]- B→DK, D→K_S⁰ππ [GGSZ] [LHCb-CONF-2013-004, 2fb⁻¹]

γ in tree decays – ADS

- Discovery of 'suppressed ADS' mode
 - Visible BF ~10⁻⁷, large CP asymmetry gives *clean* information on γ

γ in tree decays – GGSZ

- Model independent Dalitz plot analysis of B[±] → DK[±] with D→K_S⁰h⁺h⁻ (h = π, K)
 - Strong phase of D⁰ decay varies across Dalitz plot – take from CLEO measurements of DD pairs from Ψ(3770) [PRD 82 (2010) 112006]
 - Measure,

 $\begin{aligned} \mathbf{x}_{\pm} &= \mathbf{r}_{\mathrm{B}} \cos \left(\delta_{\mathrm{B}} \pm \gamma \right) \\ \mathbf{y}_{\pm} &= \mathbf{r}_{\mathrm{B}} \sin \left(\delta_{\mathrm{B}} \pm \gamma \right) \end{aligned}$

3fb⁻¹ results:

$$\gamma = (57 \pm 16)^{\circ}$$

$$r_{\rm B} = (8.8^{+2.3}_{-2.4}) \times 10^{-2}$$

$$\delta_{\rm B} = (124^{+15}_{-17})^{\circ}$$

[LHCb-CONF-2013-004]

 $B^{\pm} \rightarrow DK^{\pm}$ with $D \rightarrow K_S^0 \pi^+ \pi^-$

γ in tree decays – combination

[LHCb-CONF-2013-006]

• Channels combined to give overall LHCb result for $\bar{\gamma}$

 \rightarrow Very good agreement between direct measurements and fit

3fb⁻¹ updates to ADS/GLW methods will improve precision further

Mixing induced CPV in B_s⁰ system

- Interference between *decay* or *mixing and* then decay results in CP-violating phase:
 - $-\phi_{\rm S} = \phi_{\rm M} 2\phi_{\rm D}$

can be precisely predicted in SM, new physics could change phase

- Mass eigenstates \neq weak eigenstates: system described by: m, Γ , $\Delta\Gamma_s$, Δm_s , ϕ_s
 - CPV modulated by high Δm_s
- $\begin{array}{ll} J/\psi \varphi(K^+K^-) \mbox{ decays } \mbox{ high BF, mixture CP-} & \mbox{ decays } \mbox{ disentangle } 0 \mbox{ disentangle } 0 \mbox{ J/} \\ J/\psi f_0(\pi^+\pi^-) \mbox{ decays } \mbox{ smaller yield but pure } & \mbox{ CP-odd } \end{array}$
- m(K⁺K⁻) dependence allows to resolve twofold ambiguity [PRL 108 (2012) 241801]
- S-wave contribution : 4±2%

Mixing induced CPV in B_s⁰ system

 * CMS: $\Delta\Gamma$ only: 0.048 \pm 0.024 \pm 0.003 ps $^{-1}$

10

Semileptonic asymmetries

 Another way of probing mixing semileptonic asymmetries :

 $a_{sl}^{s} \propto \frac{N(\mu^{+}D_{s}^{(*)-}) - N(\mu^{-}D_{s}^{(*)+})}{N(\mu^{+}D_{s}^{(*)-}) + N(\mu^{-}D_{s}^{(*)+})}$ $a_{sl}^{d} \propto \frac{N(\mu^{+}D^{(*)-}) - N(\mu^{-}D^{(*)+})}{N(\mu^{+}D^{(*)-}) + N(\mu^{-}D^{(*)+})}$

sensitive probes of NP as expected to be small in SM ($\sim 10^{-5}$ (10⁻⁴) for B⁰_s (B⁰))

 D0 experiment measured dimuon asymmetry :

 $A = \frac{N(\mu^+\mu^+) - N(\mu^-\mu^-)}{N(\mu^+\mu^+) + N(\mu^-\mu^-)}$

 $A_{CP} = (-0.276 \pm 0.067 \pm 0.063)\% \qquad (9.0 \text{ fb}^{-1})$ 3.9 $\sigma \equiv 0.33\%$ compatible with SM

B

Semileptonic asymmetries

- At LHC, collide $pp \rightarrow production$ asymmetry
 - Measurements sensitive to production and detection asymmetries

$$A_{meas} = \frac{N(D_q^-\mu^+) - N(D_q^+\mu^-)}{N(D_q^-\mu^+) + N(D_q^+\mu^-)} = \frac{a_{sl}^q}{2} + [a_{prod} - \frac{a_{sl}^q}{2}]\kappa_q$$

- fast B_s^0 oscillations \rightarrow time integrated a_{sl}^s measurement possible (κ_s =0.2%)
- slow B_d^{0} oscillations \rightarrow time dependent analysis required to get a_{sl}^{d} (κ_d =30%)
- LHCb measurement of a_{sl}^{s} with 1fb⁻¹ - $a_{sl}^{s} = (-0.06 \pm 0.50 \pm 0.36)\%$ [arXiv:1308.1048]
 - This result and B-factory average for a_{sl}^d in good agreement with SM
- LHCb has demonstrated ability to reconstruct semileptonic states...

 $B \rightarrow D^{(*)} \tau v$

• Measurements of $R(D^{(*)}) = \frac{\Gamma(B \to D^{(*)} \tau \nu_{\tau})}{\Gamma(B \to D^{(*)} \ell \nu_{\ell})_{\ell=e,\mu}}$

- **BABAR** 3.40 from SM
- "excess cannot be explained by a charged Higgs boson in the type II two-Higgs-doublet model"

• 3.3 σ from SM [PRL109,101802 (2012), arXiv:1303.0571] [see talk of A. Oyanguren]

 Combined BABAR+BELLE: 4.8 or from SM, await Belle update with interest – would be interesting if LHCb can also contribute here

The decays $B_d^{\ 0} \rightarrow \mu^+ \mu^-$ and $B_s^{\ 0} \rightarrow \mu^+ \mu^-$

• The branching ratios of the decays $B_d^0 \rightarrow \mu^+ \mu^-$ and $B_s^0 \rightarrow \mu^+ \mu^-$ allow the parameters of any extended Higgs sector to be probed

- The decays are doubly suppressed in the SM
 - Flavour Changing Neutral Currents
 - Helicity suppression

However, rates well calculable - in the SM,

 $B(B_s^0 \rightarrow \mu^+ \mu^-) = 1.1 \times (3.2 \pm 0.2) \times 10^{-9}$

time integrated BF taking into account $\Delta\Gamma_s \neq 0$ [*Buras et al., arXiv:1007.5291* De Bruyin et al., *arXiv:1204.1735*]

• Sensitive to NP contributions in the scalar/pseudo-scalar sector:

$$(c_{S,P}^{MSSM})^2 \propto \left(\frac{m_b m_\mu \tan^3 \beta}{M_A^2}\right)^2$$
 MSSM, large tan β approximation

[arXiv:1307.5024]

LHCb

- LHCb update at EPS:
 - 2.1fb⁻¹ \rightarrow 3.0fb⁻¹
 - Improved reconstruction
 - Additional variables added to BDT
 - Expected sensitivity: $3.7 \rightarrow 5.0\sigma$

- B $(B_s^0 \rightarrow \mu^+ \mu^-) =$ $(2.9^{+1.1}_{-1.0}(stat)^{+0.3}_{-0.1}(syst)) \times 10^{-9}$ $\rightarrow 4\sigma$
- B (B⁰ $\to \mu^{+}\mu^{-}) =$ $(3.7^{+2.4}_{-2.1}(stat)^{+0.6}_{-0.4}(syst)) \times 10^{-10}$ $\rightarrow 2.0\sigma$ [<7.4×10⁻¹⁰ at 95% CL]

[arXiv:1307.5025]

- CMS update at EPS
 - 5fb⁻¹ \rightarrow 25fb⁻¹

- Cut-based selection \rightarrow BDT
- New and improved variables
- Expected sensitivity: 4.80

- B $(B_s^0 \rightarrow \mu^+ \mu^-) =$ (3.0^{+1.0}-0.9)×10⁻⁹ $\rightarrow 4.3\sigma$
- B (B⁰ $\rightarrow \mu^+\mu^-$) =

ATLAS also gave an update at EPS : B ($B_s^0 \rightarrow \mu^+\mu^-$) <1.5×10⁻⁸ at 95% CL

(3.5^{+2.1}_{-1.8})×10⁻¹⁰

Combined LHCb, CMS result

• The LHCb and CMS results have been combined

[LHCb-CONF-2013-012] [CMS-PAS-BPH-13-007]

 $B (B_s^0 \rightarrow \mu^+ \mu^-) = (2.9 \pm 0.7) \times 10^{-9}$ (First observation)

$$B (B^{0} \rightarrow \mu^{+} \mu^{-}) = (3.6^{+1.6} - 1.4) \times 10^{-10}$$

Good agreement with SM predictions

$B^{0}_{(s)} \rightarrow \mu^{+}\mu^{-} - future$

- Interest for the future will be measuring the ratio B(B_d⁰ \rightarrow µ⁺µ⁻)/B (B_s⁰ \rightarrow µ⁺µ⁻)
 - In SM, given by $|V_{td}/V_{ts}|^2$ \rightarrow 5% theory precision
 - Major issue double decay in flight with $B_d^0 \rightarrow \pi^+\pi^-$ decays
 - With LHCb upgrade (50fb⁻¹) could measure ratio to \sim 35%

Isospin Asymmetry in $B \rightarrow K^{(*)}\mu^{+}\mu^{-}$

• The isospin asymmetry of $B \rightarrow K^{(*)}\mu^+\mu^-$, A_I is defined as:

$$A_{I} = \frac{\mathcal{B}(B^{0} \to K^{(*)0}\mu^{+}\mu^{-}) - \frac{\tau_{0}}{\tau_{+}}\mathcal{B}(B^{\pm} \to K^{(*)\pm}\mu^{+}\mu^{-})}{\mathcal{B}(B^{0} \to K^{(*)0}\mu^{+}\mu^{-}) + \frac{\tau_{0}}{\tau_{+}}\mathcal{B}(B^{\pm} \to K^{(*)\pm}\mu^{+}\mu^{-})}$$

can be more precisely predicted than the branching fractions

• A_I is expected to be very close to zero in the SM e.g. for $B \rightarrow K^* \mu^+ \mu^-$:

Isospin Asymmetry in $B \rightarrow K^{(*)}\mu^+\mu^-$

• The isospin asymmetry of $B \rightarrow K^{(*)}\mu^+\mu^-$, A_I is defined as:

$$A_{I} = \frac{\mathcal{B}(B^{0} \to K^{(*)0}\mu^{+}\mu^{-}) - \frac{\tau_{0}}{\tau_{+}}\mathcal{B}(B^{\pm} \to K^{(*)\pm}\mu^{+}\mu^{-})}{\mathcal{B}(B^{0} \to K^{(*)0}\mu^{+}\mu^{-}) + \frac{\tau_{0}}{\tau_{+}}\mathcal{B}(B^{\pm} \to K^{(*)\pm}\mu^{+}\mu^{-})}$$

can be more precisely predicted than the branching fractions

LHCb measurement from 1fb⁻¹: (will soon be updated) • [JHEP 07 (2012) 133] -- Data ---CDF -▲-BELLE -▼-BaBar --Data ---CDF -▲-BELLE -▼-BaBar \mathbf{A}_{I} $\mathbf{A}_{\mathbf{I}}$ 0.8 LHCb LHCb 0.5 0.6 $B \rightarrow K \mu^+ \mu^ B \rightarrow K^* \mu^+ \mu^-$ 0.4 E 0 0.2 0 -0.5 -0.2 -0.4 E -1 -0.6 **Consistent with zero 4.4** σ from zero -0.8È -1.5 -1<u>`</u>0 5 10 15 20 5 10 15 20 25 0 $q^{2} [GeV^{2}/c^{4}]$ $q^2 [GeV^2/c^4]^{19}$

 $B_d^0 \rightarrow K^{*0} \mu \mu$

- Flavour changing neutral current \rightarrow loop
- Sensitive to interference between $O_{7\gamma}$, $O_{9,10}$ and their primed counterparts
- Decay described by three angles, θ_{I} , θ_{K} and ϕ , and $q^{2} = m^{2}_{\mu\mu}$, self-tagging \rightarrow angular analysis allows to probe helicity
- Exclusive decay → theory uncertainty from form factors
- Theorists construct angular observables in which uncertainties cancel to some extent

$B_d^0 \rightarrow K^{*0} \mu \mu - angular observables$

- Good agreement with SM predictions
- Analysis for $B_s^0 \rightarrow \phi \mu \mu$, $B^+ \rightarrow K^+ \mu \mu$ also give results consistent with SM

Theory pred : C. Bobeth *etal.*, JHEP 07 (2011) 067 [CMS: CMS-PAS-BPH-11-009 (5.2 fb⁻¹ ; ATLAS: ATLAS-CONF-2013-038 (4.9 fb⁻¹); BELLE: Phys. Rev. Lett. 103 (2009) 171801 (605 fb⁻¹; BABAR: Phys. Rev. D73 (2006) 092001 (208 fb⁻¹); CDF: Phys. Rev. Lett 108 (2012) 081807 (6.8 fb⁻¹) (results from CDF Public Note 10894 (9.6 fb⁻¹) not included) ; LHCb: arXiv: 1304.6325 (1 fb⁻¹)]

Impact – with tree level FV

[Altmannshofer etal., arXiv:1111.1257, JHEP 1202:106]

• Together with other EW penguin measurements, these results confirm in $\Delta F=1$ transitions the picture we have from $\Delta F=2$ (mixing):

(Analysis doesn't include $A_{CP}(B_d^{0} \rightarrow K^{*0}\mu\mu), B^{+} \rightarrow K^{+}\mu\mu, B_s^{0} \rightarrow \phi\mu\mu, ...)$

Impact – with loop CKM-like FV

[Altmannshofer etal., arXiv:1111.1257, JHEP 1202:106]

• Together with other EW penguin measurements, these results confirm in $\Delta F=1$ transitions the picture we have from $\Delta F=2$ (mixing):

$$\mathscr{L} = \mathscr{L}_{\mathsf{SM}} - \sum_{j=7,9,10} rac{V_{tb}V_{ts}^*}{16\pi^2} rac{e^{i\phi_j}}{ec{h}_j^2} \mathscr{O}_j$$

 \rightarrow NP > 10TeV or NP mimics Yukawa couplings (MFV)

$B_d^0 \rightarrow K^{*0} \mu \mu - new observables$

[arXiv:1308.1707]

Good agreement with predictions for P₄', P₆', P₈' observables

ل م

0.8

0.6

0.4

0.2

-0.4

-0.6

-0.8

- 0.5% probability to see such a deviation with 24 independent measurements
- Finding a consistent NP explanation is highly non-trivial: prev. $B_d^0 \rightarrow K^{*0}\mu\mu$ observables plus $B_s^0 \rightarrow \mu\mu$, $B \rightarrow K\mu\mu$, $B \rightarrow X_s\gamma$ depend on same short-distance physics

$B_d^0 \rightarrow K^{*0} \mu \mu - theoretical view$

- Descotes-Genon *etal*. combine the LHCb measurements with constraints from B→X_sγ, B→X_sμ⁺μ⁻, B→K^{*}γ, B_s⁰→μ⁺μ⁻ [arXiv:1307.5683] _₽
- Consistent with negative NP contribution to C₉ (4.5σ from SM using low q² data (3.7σ using both high and low q² data))
- Conclude deviation observed does not create any tension with other flavour observables
- Suggest could be generated by Z'

FIG. 1: Fit to $(C_7^{\text{NP}}, C_9^{\text{NP}})$, using the three large-recoil bins for $B \to K^* \mu^+ \mu^-$ observables, together with $B \to X_s \gamma$, $B \to X_s \mu^+ \mu^-$, $B \to K^* \gamma$ and $B_s \to \mu^+ \mu^-$. The dashed contours include both large- and low-recoil bins, whereas the orange (solid) ones use only the 1-6 GeV² bin for $B \to K^* \mu^+ \mu^$ observables. The origin $C_{7,9}^{\text{NP}} = (0,0)$ corresponds to the SM values for the Wilson coefficients $C_{7\text{eff},9}^{\text{SM}} = (-0.29, 4.07)$ at $\mu_b = 4.8 \text{ GeV}.$

$B_d^0 \rightarrow K^{*0} \mu \mu - theoretical view$

- Altmannshofer, Straub [arXiv:1308.1501] :
 - Use all angular analysis results
 - Constraints from $B(B \rightarrow X_s \gamma)$ and the A_{CP} in $B \rightarrow K^* \gamma$ prevent NP contribution to C_7 , C_7 '
 - Similarly, C₉, C₉' limited by A_{FB} and B($B \rightarrow K \mu \mu$)
 - \rightarrow Best fit with modification of C₉, C₉' or C₉, C₁₀'
- Also suggest Z' explanation consistent
- MSSM
 - In large regions of parameter space easy to get large NP contributions to C₇, C₇'
 - Hard to get SUSY contributions to C₉, C₉': *"remain to a good approximation SM-like throughout the viable MSSM parameter space, even if we allow for completely generic flavour mixing in the squark section"*
- Models with composite Higgs/extra dimensions have same problem

$B_d^0 \rightarrow K^{*0} \mu \mu - Future$

 For the full 3fb⁻¹ B_d⁰→K^{*0}µµ analysis, the aim is not just to increase integrated luminosity but to make a full angular fit

 $\frac{d^{4}\Gamma}{dq^{2}d\cos\theta_{K}d\cos\theta_{l}d\phi} = \frac{9}{32\pi} \left[J_{1s}\sin^{2}\theta_{K} + J_{1c}\cos^{2}\theta_{K} + (J_{2s}\sin^{2}\theta_{K} + J_{2c}\cos^{2}\theta_{K})\cos2\theta_{l} + J_{3}\sin^{2}\theta_{K}\sin^{2}\theta_{l}\cos2\phi + J_{4}\sin2\theta_{K}\sin2\theta_{l}\cos\phi + J_{5}\sin2\theta_{K}\sin\theta_{l}\cos\phi + (J_{6s}\sin^{2}\theta_{K} + J_{6c}\cos^{2}\theta_{K})\cos\theta_{l} + J_{7}\sin2\theta_{K}\sin\theta_{l}\sin\phi + J_{8}\sin2\theta_{K}\sin2\theta_{l}\sin\phi + J_{9}\sin^{2}\theta_{K}\sin^{2}\theta_{l}\sin2\phi \right],$ (1)

$$\begin{split} J_{1s} &= \frac{(2+\beta_{\ell}^2)}{4} \left[|A_{\perp}^L|^2 + |A_{\parallel}^R|^2 + |A_{\parallel}^R|^2 + |A_{\parallel}^R|^2 \right] + \frac{4m_{\ell}^2}{q^2} \operatorname{Re} \left(A_{\perp}^L A_{\perp}^{R*} + A_{\parallel}^L A_{\parallel}^{R*} \right) , \\ J_{1c} &= |A_0^L|^2 + |A_0^R|^2 + \frac{4m_{\ell}^2}{q^2} \left[|A_t|^2 + 2\operatorname{Re}(A_0^L A_0^{R*}) \right] + \beta_{\ell}^2 |A_s|^2 , \\ J_{2s} &= \frac{\beta_{\ell}^2}{4} \left[|A_{\perp}^L|^2 + |A_{\parallel}^R|^2 + |A_{\parallel}^R|^2 + |A_{\parallel}^R|^2 \right] , \qquad J_{2c} = -\beta_{\ell}^2 \left[|A_0^L|^2 + |A_0^R|^2 \right] , \\ J_3 &= \frac{1}{2} \beta_{\ell}^2 \left[|A_{\perp}^L|^2 - |A_{\parallel}^R|^2 + |A_{\perp}^R|^2 - |A_{\parallel}^R|^2 \right] , \qquad J_4 = \frac{1}{\sqrt{2}} \beta_{\ell}^2 \left[\operatorname{Re}(A_0^L A_{\parallel}^{L*} + A_0^R A_{\parallel}^{R*}) \right] , \\ J_5 &= \sqrt{2} \beta_{\ell} \left[\operatorname{Re}(A_0^L A_{\perp}^{L*} - A_0^R A_{\perp}^{R*}) - \frac{m_{\ell}}{\sqrt{q^2}} \operatorname{Re}(A_{\parallel}^L A_s^* + A_{\parallel}^{R*} A_S) \right] , \\ J_{6s} &= 2\beta_{\ell} \left[\operatorname{Re}(A_{\parallel}^L A_{\perp}^{L*} - A_{\parallel}^R A_{\perp}^{R*}) \right] , \qquad J_{6c} = 4\beta_{\ell} \frac{m_{\ell}}{\sqrt{q^2}} \operatorname{Re}(A_0^L A_s^* + A_0^{R*} A_S) , \\ J_7 &= \sqrt{2} \beta_{\ell} \left[\operatorname{Im}(A_0^L A_{\parallel}^{L*} - A_0^R A_{\parallel}^{R*}) + \frac{m_{\ell}}{\sqrt{q^2}} \operatorname{Im}(A_{\perp}^L A_s^* - A_{\perp}^{R*} A_S)) \right] , \\ J_8 &= \frac{1}{\sqrt{2}} \beta_{\ell}^2 \left[\operatorname{Im}(A_0^L A_{\perp}^{L*} + A_0^R A_{\perp}^{R*}) \right] , \qquad J_9 = \beta_{\ell}^2 \left[\operatorname{Im}(A_{\parallel}^{L*} A_{\perp}^R + A_{\parallel}^{R*} A_{\perp}^R) \right] , \end{split}$$

- J_i terms depend on the complex spin amplitudes A_{L,R}⁰, A_{L,R}["], A_{L,R} if it is possible to extract these
 - significantly more power for observables already determined
 - then possible to form any observable

The LHCb Upgrade

- LHCb will be upgraded during LHC's second long shutdown
- As elsewhere at the LHC, limitation for progress is in the trigger
 - The hardware trigger of LHCb at 1.1 MHz saturates for hadronic final states at luminosities above ~3×10³² cm⁻²s⁻¹
 - Will remove the hardware trigger and run an entirely software-based
 High Level Trigger at 40 MHz, operate at 5× higher luminosity
- Planned hardware upgrades
 - Move pixel detector even closer to beam to improve light quark rejection
 - Upgrade particle identification and tracking systems to keep occupancy low
- Expect to increase data-sample collected each year by
 - Factor 20 for channels involving hadrons
 - Factor 10 for channels involving muons

[LOI, CERN-LHCC-2011-001] [FDTR, CERN-LHCC-2012-007]

Conclusions

- Flavour physics has sensitivity to mass scales that are well above those accessible by direct production
 - Measurements I have shown are far away from systematics limits imposed by experiments or theory
 - In many cases challenge is to obtain even larger event samples
 - Look forward to more data and then upgrade of experiment
- At present, the SM comes out matching the data well
- Most significant deviation is that seen in $B_d^0 \rightarrow K^{*0} \mu \mu P_5$ '
- Are several other areas that warrant further attention in the future:
 - Update of isospin asymmetry \rightarrow confirm anomaly?
 - Search for $B^0 \rightarrow \mu \mu \rightarrow \text{constraint on MFV}$
 - Measurement of $B \rightarrow D^{(*)}\tau \nu/B \rightarrow D^{(*)}\mu \nu \rightarrow \text{confirm } R(D^{(*)}) \text{ anomaly } (?)$